1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1998
-}
{-# LANGUAGE DeriveDataTypeable, ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | Core literals
module GHC.Types.Literal
(
-- * Main data type
Literal(..) -- Exported to ParseIface
, LitNumType(..)
-- ** Creating Literals
, mkLitInt, mkLitIntWrap, mkLitIntWrapC, mkLitIntUnchecked
, mkLitWord, mkLitWordWrap, mkLitWordWrapC, mkLitWordUnchecked
, mkLitInt8, mkLitInt8Wrap, mkLitInt8Unchecked
, mkLitWord8, mkLitWord8Wrap, mkLitWord8Unchecked
, mkLitInt16, mkLitInt16Wrap, mkLitInt16Unchecked
, mkLitWord16, mkLitWord16Wrap, mkLitWord16Unchecked
, mkLitInt32, mkLitInt32Wrap, mkLitInt32Unchecked
, mkLitWord32, mkLitWord32Wrap, mkLitWord32Unchecked
, mkLitInt64, mkLitInt64Wrap, mkLitInt64Unchecked
, mkLitWord64, mkLitWord64Wrap, mkLitWord64Unchecked
, mkLitFloat, mkLitDouble
, mkLitChar, mkLitString
, mkLitBigNat
, mkLitNumber, mkLitNumberWrap
-- ** Operations on Literals
, literalType
, pprLiteral
, litNumIsSigned
, litNumRange
, litNumCheckRange
, litNumWrap
, litNumCoerce
, litNumNarrow
, litNumBitSize
, isMinBound
, isMaxBound
-- ** Predicates on Literals and their contents
, litIsDupable, litIsTrivial, litIsLifted
, inCharRange
, isZeroLit, isOneLit
, litFitsInChar
, litValue, mapLitValue
, isLitValue_maybe, isLitRubbish
-- ** Coercions
, narrowInt8Lit, narrowInt16Lit, narrowInt32Lit, narrowInt64Lit
, narrowWord8Lit, narrowWord16Lit, narrowWord32Lit, narrowWord64Lit
, convertToIntLit, convertToWordLit
, charToIntLit, intToCharLit
, floatToIntLit, intToFloatLit, doubleToIntLit, intToDoubleLit
, nullAddrLit, floatToDoubleLit, doubleToFloatLit
) where
import GHC.Prelude
import GHC.Builtin.Types.Prim
import GHC.Core.Type( Type, RuntimeRepType, mkForAllTy, mkTyVarTy, typeOrConstraintKind )
import GHC.Core.TyCo.Compare( nonDetCmpType )
import GHC.Types.Var
import GHC.Utils.Outputable
import GHC.Data.FastString
import GHC.Types.Basic
import GHC.Utils.Binary
import GHC.Settings.Constants
import GHC.Platform
import GHC.Utils.Panic
import GHC.Utils.Encoding
import Data.ByteString (ByteString)
import Data.Int
import Data.Word
import Data.Char
import Data.Data ( Data )
import GHC.Exts( isTrue#, dataToTag#, (<#) )
import Numeric ( fromRat )
{-
************************************************************************
* *
\subsection{Literals}
* *
************************************************************************
-}
-- | So-called 'Literal's are one of:
--
-- * An unboxed numeric literal or floating-point literal which is presumed
-- to be surrounded by appropriate constructors (@Int#@, etc.), so that
-- the overall thing makes sense.
--
-- We maintain the invariant that the 'Integer' in the 'LitNumber'
-- constructor is actually in the (possibly target-dependent) range.
-- The mkLit{Int,Word}*Wrap smart constructors ensure this by applying
-- the target machine's wrapping semantics. Use these in situations
-- where you know the wrapping semantics are correct.
--
-- * The literal derived from the label mentioned in a \"foreign label\"
-- declaration ('LitLabel')
--
-- * A 'LitRubbish' to be used in place of values that are never used.
--
-- * A character
-- * A string
-- * The NULL pointer
--
data Literal
= LitChar Char -- ^ @Char#@ - at least 31 bits. Create with
-- 'mkLitChar'
| LitNumber !LitNumType !Integer
-- ^ Any numeric literal that can be
-- internally represented with an Integer.
| LitString !ByteString -- ^ A string-literal: stored and emitted
-- UTF-8 encoded, we'll arrange to decode it
-- at runtime. Also emitted with a @\'\\0\'@
-- terminator. Create with 'mkLitString'
| LitNullAddr -- ^ The @NULL@ pointer, the only pointer value
-- that can be represented as a Literal. Create
-- with 'nullAddrLit'
| LitRubbish -- ^ A nonsense value; See Note [Rubbish literals].
TypeOrConstraint -- t_or_c: whether this is a type or a constraint
RuntimeRepType -- rr: a type of kind RuntimeRep
-- The type of the literal is forall (a:TYPE rr). a
-- or forall (a:CONSTRAINT rr). a
--
-- INVARIANT: the Type has no free variables
-- and so substitution etc can ignore it
| LitFloat Rational -- ^ @Float#@. Create with 'mkLitFloat'
| LitDouble Rational -- ^ @Double#@. Create with 'mkLitDouble'
| LitLabel FastString (Maybe Int) FunctionOrData
-- ^ A label literal. Parameters:
--
-- 1) The name of the symbol mentioned in the
-- declaration
--
-- 2) The size (in bytes) of the arguments
-- the label expects. Only applicable with
-- @stdcall@ labels. @Just x@ => @\<x\>@ will
-- be appended to label name when emitting
-- assembly.
--
-- 3) Flag indicating whether the symbol
-- references a function or a data
deriving Data
-- | Numeric literal type
data LitNumType
= LitNumBigNat -- ^ @Bignat@ (see Note [BigNum literals])
| LitNumInt -- ^ @Int#@ - according to target machine
| LitNumInt8 -- ^ @Int8#@ - exactly 8 bits
| LitNumInt16 -- ^ @Int16#@ - exactly 16 bits
| LitNumInt32 -- ^ @Int32#@ - exactly 32 bits
| LitNumInt64 -- ^ @Int64#@ - exactly 64 bits
| LitNumWord -- ^ @Word#@ - according to target machine
| LitNumWord8 -- ^ @Word8#@ - exactly 8 bits
| LitNumWord16 -- ^ @Word16#@ - exactly 16 bits
| LitNumWord32 -- ^ @Word32#@ - exactly 32 bits
| LitNumWord64 -- ^ @Word64#@ - exactly 64 bits
deriving (Data,Enum,Eq,Ord)
-- | Indicate if a numeric literal type supports negative numbers
litNumIsSigned :: LitNumType -> Bool
litNumIsSigned nt = case nt of
LitNumBigNat -> False
LitNumInt -> True
LitNumInt8 -> True
LitNumInt16 -> True
LitNumInt32 -> True
LitNumInt64 -> True
LitNumWord -> False
LitNumWord8 -> False
LitNumWord16 -> False
LitNumWord32 -> False
LitNumWord64 -> False
-- | Number of bits
litNumBitSize :: Platform -> LitNumType -> Maybe Word
litNumBitSize platform nt = case nt of
LitNumBigNat -> Nothing
LitNumInt -> Just (fromIntegral (platformWordSizeInBits platform))
LitNumInt8 -> Just 8
LitNumInt16 -> Just 16
LitNumInt32 -> Just 32
LitNumInt64 -> Just 64
LitNumWord -> Just (fromIntegral (platformWordSizeInBits platform))
LitNumWord8 -> Just 8
LitNumWord16 -> Just 16
LitNumWord32 -> Just 32
LitNumWord64 -> Just 64
instance Binary LitNumType where
put_ bh numTyp = putByte bh (fromIntegral (fromEnum numTyp))
get bh = do
h <- getByte bh
return (toEnum (fromIntegral h))
{-
Note [BigNum literals]
~~~~~~~~~~~~~~~~~~~~~~
GHC supports 2 kinds of arbitrary precision numbers (a.k.a BigNum):
* data Natural = NS Word# | NB BigNat#
* data Integer = IS Int# | IN BigNat# | IP BigNat#
In the past, we had Core constructors to represent Integer and Natural literals.
These literals were then lowered into their real Core representation only in
Core prep. The issue with this approach is that literals have two
representations and we have to ensure that we handle them the same everywhere
(in every optimisation, etc.).
For example (0 :: Integer) was representable in Core with both:
Lit (LitNumber LitNumInteger 0) -- literal
App (Var integerISDataCon) (Lit (LitNumber LitNumInt 0)) -- real representation
Nowadays we always use the real representation for Integer and Natural literals.
However we still have two representations for BigNat# literals. BigNat# literals
are still lowered in Core prep into a call to a constructor function (BigNat# is
ByteArray# and we don't have ByteArray# literals yet so we have to build them at
runtime).
Note [String literals]
~~~~~~~~~~~~~~~~~~~~~~
String literals are UTF-8 encoded and stored into ByteStrings in the following
ASTs: Haskell, Core, Stg, Cmm. TH can also emit ByteString based string literals
with the BytesPrimL constructor (see #14741).
It wasn't true before as [Word8] was used in Cmm AST and in TH which was quite
bad for performance with large strings (see #16198 and #14741).
To include string literals into output objects, the assembler code generator has
to embed the UTF-8 encoded binary blob. See Note [Embedding large binary blobs]
for more details.
-}
instance Binary Literal where
put_ bh (LitChar aa) = do putByte bh 0; put_ bh aa
put_ bh (LitString ab) = do putByte bh 1; put_ bh ab
put_ bh (LitNullAddr) = putByte bh 2
put_ bh (LitFloat ah) = do putByte bh 3; put_ bh ah
put_ bh (LitDouble ai) = do putByte bh 4; put_ bh ai
put_ bh (LitLabel aj mb fod)
= do putByte bh 5
put_ bh aj
put_ bh mb
put_ bh fod
put_ bh (LitNumber nt i)
= do putByte bh 6
put_ bh nt
put_ bh i
put_ _ lit@(LitRubbish {}) = pprPanic "Binary LitRubbish" (ppr lit)
-- We use IfaceLitRubbish; see Note [Rubbish literals], item (6)
get bh = do
h <- getByte bh
case h of
0 -> do
aa <- get bh
return (LitChar aa)
1 -> do
ab <- get bh
return (LitString ab)
2 -> return (LitNullAddr)
3 -> do
ah <- get bh
return (LitFloat ah)
4 -> do
ai <- get bh
return (LitDouble ai)
5 -> do
aj <- get bh
mb <- get bh
fod <- get bh
return (LitLabel aj mb fod)
6 -> do
nt <- get bh
i <- get bh
return (LitNumber nt i)
_ -> pprPanic "Binary:Literal" (int (fromIntegral h))
instance Outputable Literal where
ppr = pprLiteral id
instance Eq Literal where
a == b = compare a b == EQ
-- | Needed for the @Ord@ instance of 'AltCon', which in turn is needed in
-- 'GHC.Data.TrieMap.CoreMap'.
instance Ord Literal where
compare = cmpLit
{-
Construction
~~~~~~~~~~~~
-}
{- Note [Word/Int underflow/overflow]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
According to the Haskell Report 2010 (Sections 18.1 and 23.1 about signed and
unsigned integral types): "All arithmetic is performed modulo 2^n, where n is
the number of bits in the type."
GHC stores Word# and Int# constant values as Integer. Core optimizations such
as constant folding must ensure that the Integer value remains in the valid
target Word/Int range (see #13172). The following functions are used to
ensure this.
Note that we *don't* warn the user about overflow. It's not done at runtime
either, and compilation of completely harmless things like
((124076834 :: Word32) + (2147483647 :: Word32))
doesn't yield a warning. Instead we simply squash the value into the *target*
Int/Word range.
-}
-- | Make a literal number using wrapping semantics if the value is out of
-- bound.
mkLitNumberWrap :: Platform -> LitNumType -> Integer -> Literal
mkLitNumberWrap platform nt i = case nt of
LitNumInt -> case platformWordSize platform of
PW4 -> wrap @Int32
PW8 -> wrap @Int64
LitNumWord -> case platformWordSize platform of
PW4 -> wrap @Word32
PW8 -> wrap @Word64
LitNumInt8 -> wrap @Int8
LitNumInt16 -> wrap @Int16
LitNumInt32 -> wrap @Int32
LitNumInt64 -> wrap @Int64
LitNumWord8 -> wrap @Word8
LitNumWord16 -> wrap @Word16
LitNumWord32 -> wrap @Word32
LitNumWord64 -> wrap @Word64
LitNumBigNat
| i < 0 -> panic "mkLitNumberWrap: trying to create a negative BigNat"
| otherwise -> LitNumber nt i
where
wrap :: forall a. (Integral a, Num a) => Literal
wrap = LitNumber nt (toInteger (fromIntegral i :: a))
-- | Wrap a literal number according to its type using wrapping semantics.
litNumWrap :: Platform -> Literal -> Literal
litNumWrap platform (LitNumber nt i) = mkLitNumberWrap platform nt i
litNumWrap _ l = pprPanic "litNumWrap" (ppr l)
-- | Coerce a literal number into another using wrapping semantics.
litNumCoerce :: LitNumType -> Platform -> Literal -> Literal
litNumCoerce pt platform (LitNumber _nt i) = mkLitNumberWrap platform pt i
litNumCoerce _ _ l = pprPanic "litNumWrapCoerce: not a number" (ppr l)
-- | Narrow a literal number by converting it into another number type and then
-- converting it back to its original type.
litNumNarrow :: LitNumType -> Platform -> Literal -> Literal
litNumNarrow pt platform (LitNumber nt i)
= case mkLitNumberWrap platform pt i of
LitNumber _ j -> mkLitNumberWrap platform nt j
l -> pprPanic "litNumNarrow: got invalid literal" (ppr l)
litNumNarrow _ _ l = pprPanic "litNumNarrow: invalid literal" (ppr l)
-- | Check that a given number is in the range of a numeric literal
litNumCheckRange :: Platform -> LitNumType -> Integer -> Bool
litNumCheckRange platform nt i =
maybe True (i >=) m_lower &&
maybe True (i <=) m_upper
where
(m_lower, m_upper) = litNumRange platform nt
-- | Get the literal range
litNumRange :: Platform -> LitNumType -> (Maybe Integer, Maybe Integer)
litNumRange platform nt = case nt of
LitNumInt -> (Just (platformMinInt platform), Just (platformMaxInt platform))
LitNumWord -> (Just 0, Just (platformMaxWord platform))
LitNumInt8 -> bounded_range @Int8
LitNumInt16 -> bounded_range @Int16
LitNumInt32 -> bounded_range @Int32
LitNumInt64 -> bounded_range @Int64
LitNumWord8 -> bounded_range @Word8
LitNumWord16 -> bounded_range @Word16
LitNumWord32 -> bounded_range @Word32
LitNumWord64 -> bounded_range @Word64
LitNumBigNat -> (Just 0, Nothing)
where
bounded_range :: forall a . (Integral a, Bounded a) => (Maybe Integer,Maybe Integer)
bounded_range = case boundedRange @a of
(mi,ma) -> (Just mi, Just ma)
-- | Create a numeric 'Literal' of the given type
mkLitNumber :: Platform -> LitNumType -> Integer -> Literal
mkLitNumber platform nt i =
assertPpr (litNumCheckRange platform nt i) (integer i)
(LitNumber nt i)
-- | Creates a 'Literal' of type @Int#@
mkLitInt :: Platform -> Integer -> Literal
mkLitInt platform x = assertPpr (platformInIntRange platform x) (integer x)
(mkLitIntUnchecked x)
-- | Creates a 'Literal' of type @Int#@.
-- If the argument is out of the (target-dependent) range, it is wrapped.
-- See Note [Word/Int underflow/overflow]
mkLitIntWrap :: Platform -> Integer -> Literal
mkLitIntWrap platform i = mkLitNumberWrap platform LitNumInt i
-- | Creates a 'Literal' of type @Int#@ without checking its range.
mkLitIntUnchecked :: Integer -> Literal
mkLitIntUnchecked i = LitNumber LitNumInt i
-- | Creates a 'Literal' of type @Int#@, as well as a 'Bool'ean flag indicating
-- overflow. That is, if the argument is out of the (target-dependent) range
-- the argument is wrapped and the overflow flag will be set.
-- See Note [Word/Int underflow/overflow]
mkLitIntWrapC :: Platform -> Integer -> (Literal, Bool)
mkLitIntWrapC platform i = (n, i /= i')
where
n@(LitNumber _ i') = mkLitIntWrap platform i
-- | Creates a 'Literal' of type @Word#@
mkLitWord :: Platform -> Integer -> Literal
mkLitWord platform x = assertPpr (platformInWordRange platform x) (integer x)
(mkLitWordUnchecked x)
-- | Creates a 'Literal' of type @Word#@.
-- If the argument is out of the (target-dependent) range, it is wrapped.
-- See Note [Word/Int underflow/overflow]
mkLitWordWrap :: Platform -> Integer -> Literal
mkLitWordWrap platform i = mkLitNumberWrap platform LitNumWord i
-- | Creates a 'Literal' of type @Word#@ without checking its range.
mkLitWordUnchecked :: Integer -> Literal
mkLitWordUnchecked i = LitNumber LitNumWord i
-- | Creates a 'Literal' of type @Word#@, as well as a 'Bool'ean flag indicating
-- carry. That is, if the argument is out of the (target-dependent) range
-- the argument is wrapped and the carry flag will be set.
-- See Note [Word/Int underflow/overflow]
mkLitWordWrapC :: Platform -> Integer -> (Literal, Bool)
mkLitWordWrapC platform i = (n, i /= i')
where
n@(LitNumber _ i') = mkLitWordWrap platform i
-- | Creates a 'Literal' of type @Int8#@
mkLitInt8 :: Integer -> Literal
mkLitInt8 x = assertPpr (inBoundedRange @Int8 x) (integer x) (mkLitInt8Unchecked x)
-- | Creates a 'Literal' of type @Int8#@.
-- If the argument is out of the range, it is wrapped.
mkLitInt8Wrap :: Integer -> Literal
mkLitInt8Wrap i = mkLitInt8Unchecked (toInteger (fromIntegral i :: Int8))
-- | Creates a 'Literal' of type @Int8#@ without checking its range.
mkLitInt8Unchecked :: Integer -> Literal
mkLitInt8Unchecked i = LitNumber LitNumInt8 i
-- | Creates a 'Literal' of type @Word8#@
mkLitWord8 :: Integer -> Literal
mkLitWord8 x = assertPpr (inBoundedRange @Word8 x) (integer x) (mkLitWord8Unchecked x)
-- | Creates a 'Literal' of type @Word8#@.
-- If the argument is out of the range, it is wrapped.
mkLitWord8Wrap :: Integer -> Literal
mkLitWord8Wrap i = mkLitWord8Unchecked (toInteger (fromIntegral i :: Word8))
-- | Creates a 'Literal' of type @Word8#@ without checking its range.
mkLitWord8Unchecked :: Integer -> Literal
mkLitWord8Unchecked i = LitNumber LitNumWord8 i
-- | Creates a 'Literal' of type @Int16#@
mkLitInt16 :: Integer -> Literal
mkLitInt16 x = assertPpr (inBoundedRange @Int16 x) (integer x) (mkLitInt16Unchecked x)
-- | Creates a 'Literal' of type @Int16#@.
-- If the argument is out of the range, it is wrapped.
mkLitInt16Wrap :: Integer -> Literal
mkLitInt16Wrap i = mkLitInt16Unchecked (toInteger (fromIntegral i :: Int16))
-- | Creates a 'Literal' of type @Int16#@ without checking its range.
mkLitInt16Unchecked :: Integer -> Literal
mkLitInt16Unchecked i = LitNumber LitNumInt16 i
-- | Creates a 'Literal' of type @Word16#@
mkLitWord16 :: Integer -> Literal
mkLitWord16 x = assertPpr (inBoundedRange @Word16 x) (integer x) (mkLitWord16Unchecked x)
-- | Creates a 'Literal' of type @Word16#@.
-- If the argument is out of the range, it is wrapped.
mkLitWord16Wrap :: Integer -> Literal
mkLitWord16Wrap i = mkLitWord16Unchecked (toInteger (fromIntegral i :: Word16))
-- | Creates a 'Literal' of type @Word16#@ without checking its range.
mkLitWord16Unchecked :: Integer -> Literal
mkLitWord16Unchecked i = LitNumber LitNumWord16 i
-- | Creates a 'Literal' of type @Int32#@
mkLitInt32 :: Integer -> Literal
mkLitInt32 x = assertPpr (inBoundedRange @Int32 x) (integer x) (mkLitInt32Unchecked x)
-- | Creates a 'Literal' of type @Int32#@.
-- If the argument is out of the range, it is wrapped.
mkLitInt32Wrap :: Integer -> Literal
mkLitInt32Wrap i = mkLitInt32Unchecked (toInteger (fromIntegral i :: Int32))
-- | Creates a 'Literal' of type @Int32#@ without checking its range.
mkLitInt32Unchecked :: Integer -> Literal
mkLitInt32Unchecked i = LitNumber LitNumInt32 i
-- | Creates a 'Literal' of type @Word32#@
mkLitWord32 :: Integer -> Literal
mkLitWord32 x = assertPpr (inBoundedRange @Word32 x) (integer x) (mkLitWord32Unchecked x)
-- | Creates a 'Literal' of type @Word32#@.
-- If the argument is out of the range, it is wrapped.
mkLitWord32Wrap :: Integer -> Literal
mkLitWord32Wrap i = mkLitWord32Unchecked (toInteger (fromIntegral i :: Word32))
-- | Creates a 'Literal' of type @Word32#@ without checking its range.
mkLitWord32Unchecked :: Integer -> Literal
mkLitWord32Unchecked i = LitNumber LitNumWord32 i
-- | Creates a 'Literal' of type @Int64#@
mkLitInt64 :: Integer -> Literal
mkLitInt64 x = assertPpr (inBoundedRange @Int64 x) (integer x) (mkLitInt64Unchecked x)
-- | Creates a 'Literal' of type @Int64#@.
-- If the argument is out of the range, it is wrapped.
mkLitInt64Wrap :: Integer -> Literal
mkLitInt64Wrap i = mkLitInt64Unchecked (toInteger (fromIntegral i :: Int64))
-- | Creates a 'Literal' of type @Int64#@ without checking its range.
mkLitInt64Unchecked :: Integer -> Literal
mkLitInt64Unchecked i = LitNumber LitNumInt64 i
-- | Creates a 'Literal' of type @Word64#@
mkLitWord64 :: Integer -> Literal
mkLitWord64 x = assertPpr (inBoundedRange @Word64 x) (integer x) (mkLitWord64Unchecked x)
-- | Creates a 'Literal' of type @Word64#@.
-- If the argument is out of the range, it is wrapped.
mkLitWord64Wrap :: Integer -> Literal
mkLitWord64Wrap i = mkLitWord64Unchecked (toInteger (fromIntegral i :: Word64))
-- | Creates a 'Literal' of type @Word64#@ without checking its range.
mkLitWord64Unchecked :: Integer -> Literal
mkLitWord64Unchecked i = LitNumber LitNumWord64 i
-- | Creates a 'Literal' of type @Float#@
mkLitFloat :: Rational -> Literal
mkLitFloat = LitFloat
-- | Creates a 'Literal' of type @Double#@
mkLitDouble :: Rational -> Literal
mkLitDouble = LitDouble
-- | Creates a 'Literal' of type @Char#@
mkLitChar :: Char -> Literal
mkLitChar = LitChar
-- | Creates a 'Literal' of type @Addr#@, which is appropriate for passing to
-- e.g. some of the \"error\" functions in GHC.Err such as @GHC.Err.runtimeError@
mkLitString :: String -> Literal
-- stored UTF-8 encoded
mkLitString [] = LitString mempty
mkLitString s = LitString (utf8EncodeByteString s)
mkLitBigNat :: Integer -> Literal
mkLitBigNat x = assertPpr (x >= 0) (integer x)
(LitNumber LitNumBigNat x)
isLitRubbish :: Literal -> Bool
isLitRubbish (LitRubbish {}) = True
isLitRubbish _ = False
inBoundedRange :: forall a. (Bounded a, Integral a) => Integer -> Bool
inBoundedRange x = x >= toInteger (minBound :: a) &&
x <= toInteger (maxBound :: a)
boundedRange :: forall a. (Bounded a, Integral a) => (Integer,Integer)
boundedRange = (toInteger (minBound :: a), toInteger (maxBound :: a))
isMinBound :: Platform -> Literal -> Bool
isMinBound _ (LitChar c) = c == minBound
isMinBound platform (LitNumber nt i) = case nt of
LitNumInt -> i == platformMinInt platform
LitNumInt8 -> i == toInteger (minBound :: Int8)
LitNumInt16 -> i == toInteger (minBound :: Int16)
LitNumInt32 -> i == toInteger (minBound :: Int32)
LitNumInt64 -> i == toInteger (minBound :: Int64)
LitNumWord -> i == 0
LitNumWord8 -> i == 0
LitNumWord16 -> i == 0
LitNumWord32 -> i == 0
LitNumWord64 -> i == 0
LitNumBigNat -> i == 0
isMinBound _ _ = False
isMaxBound :: Platform -> Literal -> Bool
isMaxBound _ (LitChar c) = c == maxBound
isMaxBound platform (LitNumber nt i) = case nt of
LitNumInt -> i == platformMaxInt platform
LitNumInt8 -> i == toInteger (maxBound :: Int8)
LitNumInt16 -> i == toInteger (maxBound :: Int16)
LitNumInt32 -> i == toInteger (maxBound :: Int32)
LitNumInt64 -> i == toInteger (maxBound :: Int64)
LitNumWord -> i == platformMaxWord platform
LitNumWord8 -> i == toInteger (maxBound :: Word8)
LitNumWord16 -> i == toInteger (maxBound :: Word16)
LitNumWord32 -> i == toInteger (maxBound :: Word32)
LitNumWord64 -> i == toInteger (maxBound :: Word64)
LitNumBigNat -> False
isMaxBound _ _ = False
inCharRange :: Char -> Bool
inCharRange c = c >= '\0' && c <= chr tARGET_MAX_CHAR
-- | Tests whether the literal represents a zero of whatever type it is
isZeroLit :: Literal -> Bool
isZeroLit (LitNumber _ 0) = True
isZeroLit (LitFloat 0) = True
isZeroLit (LitDouble 0) = True
isZeroLit _ = False
-- | Tests whether the literal represents a one of whatever type it is
isOneLit :: Literal -> Bool
isOneLit (LitNumber _ 1) = True
isOneLit (LitFloat 1) = True
isOneLit (LitDouble 1) = True
isOneLit _ = False
-- | Returns the 'Integer' contained in the 'Literal', for when that makes
-- sense, i.e. for 'Char' and numbers.
litValue :: Literal -> Integer
litValue l = case isLitValue_maybe l of
Just x -> x
Nothing -> pprPanic "litValue" (ppr l)
-- | Returns the 'Integer' contained in the 'Literal', for when that makes
-- sense, i.e. for 'Char' and numbers.
isLitValue_maybe :: Literal -> Maybe Integer
isLitValue_maybe (LitChar c) = Just $ toInteger $ ord c
isLitValue_maybe (LitNumber _ i) = Just i
isLitValue_maybe _ = Nothing
-- | Apply a function to the 'Integer' contained in the 'Literal', for when that
-- makes sense, e.g. for 'Char' and numbers.
-- For fixed-size integral literals, the result will be wrapped in accordance
-- with the semantics of the target type.
-- See Note [Word/Int underflow/overflow]
mapLitValue :: Platform -> (Integer -> Integer) -> Literal -> Literal
mapLitValue _ f (LitChar c) = mkLitChar (fchar c)
where fchar = chr . fromInteger . f . toInteger . ord
mapLitValue platform f (LitNumber nt i) = mkLitNumberWrap platform nt (f i)
mapLitValue _ _ l = pprPanic "mapLitValue" (ppr l)
{-
Coercions
~~~~~~~~~
-}
charToIntLit, intToCharLit,
floatToIntLit, intToFloatLit,
doubleToIntLit, intToDoubleLit,
floatToDoubleLit, doubleToFloatLit
:: Literal -> Literal
-- | Narrow a literal number (unchecked result range)
narrowLit' :: forall a. Integral a => LitNumType -> Literal -> Literal
narrowLit' nt' (LitNumber _ i) = LitNumber nt' (toInteger (fromInteger i :: a))
narrowLit' _ l = pprPanic "narrowLit" (ppr l)
narrowInt8Lit, narrowInt16Lit, narrowInt32Lit, narrowInt64Lit,
narrowWord8Lit, narrowWord16Lit, narrowWord32Lit, narrowWord64Lit :: Literal -> Literal
narrowInt8Lit = narrowLit' @Int8 LitNumInt8
narrowInt16Lit = narrowLit' @Int16 LitNumInt16
narrowInt32Lit = narrowLit' @Int32 LitNumInt32
narrowInt64Lit = narrowLit' @Int64 LitNumInt64
narrowWord8Lit = narrowLit' @Word8 LitNumWord8
narrowWord16Lit = narrowLit' @Word16 LitNumWord16
narrowWord32Lit = narrowLit' @Word32 LitNumWord32
narrowWord64Lit = narrowLit' @Word64 LitNumWord64
-- | Extend or narrow a fixed-width literal (e.g. 'Int16#') to a target
-- word-sized literal ('Int#' or 'Word#'). Narrowing can only happen on 32-bit
-- architectures when we convert a 64-bit literal into a 32-bit one.
convertToWordLit, convertToIntLit :: Platform -> Literal -> Literal
convertToWordLit platform (LitNumber _nt i) = mkLitWordWrap platform i
convertToWordLit _platform l = pprPanic "convertToWordLit" (ppr l)
convertToIntLit platform (LitNumber _nt i) = mkLitIntWrap platform i
convertToIntLit _platform l = pprPanic "convertToIntLit" (ppr l)
charToIntLit (LitChar c) = mkLitIntUnchecked (toInteger (ord c))
charToIntLit l = pprPanic "charToIntLit" (ppr l)
intToCharLit (LitNumber _ i) = LitChar (chr (fromInteger i))
intToCharLit l = pprPanic "intToCharLit" (ppr l)
floatToIntLit (LitFloat f) = mkLitIntUnchecked (truncate f)
floatToIntLit l = pprPanic "floatToIntLit" (ppr l)
intToFloatLit (LitNumber _ i) = LitFloat (fromInteger i)
intToFloatLit l = pprPanic "intToFloatLit" (ppr l)
doubleToIntLit (LitDouble f) = mkLitIntUnchecked (truncate f)
doubleToIntLit l = pprPanic "doubleToIntLit" (ppr l)
intToDoubleLit (LitNumber _ i) = LitDouble (fromInteger i)
intToDoubleLit l = pprPanic "intToDoubleLit" (ppr l)
floatToDoubleLit (LitFloat f) = LitDouble f
floatToDoubleLit l = pprPanic "floatToDoubleLit" (ppr l)
doubleToFloatLit (LitDouble d) = LitFloat d
doubleToFloatLit l = pprPanic "doubleToFloatLit" (ppr l)
nullAddrLit :: Literal
nullAddrLit = LitNullAddr
{-
Predicates
~~~~~~~~~~
-}
-- | True if there is absolutely no penalty to duplicating the literal.
-- False principally of strings.
--
-- "Why?", you say? I'm glad you asked. Well, for one duplicating strings would
-- blow up code sizes. Not only this, it's also unsafe.
--
-- Consider a program that wants to traverse a string. One way it might do this
-- is to first compute the Addr# pointing to the end of the string, and then,
-- starting from the beginning, bump a pointer using eqAddr# to determine the
-- end. For instance,
--
-- @
-- -- Given pointers to the start and end of a string, count how many zeros
-- -- the string contains.
-- countZeros :: Addr# -> Addr# -> -> Int
-- countZeros start end = go start 0
-- where
-- go off n
-- | off `addrEq#` end = n
-- | otherwise = go (off `plusAddr#` 1) n'
-- where n' | isTrue# (indexInt8OffAddr# off 0# ==# 0#) = n + 1
-- | otherwise = n
-- @
--
-- Consider what happens if we considered strings to be trivial (and therefore
-- duplicable) and emitted a call like @countZeros "hello"# ("hello"#
-- `plusAddr`# 5)@. The beginning and end pointers do not belong to the same
-- string, meaning that an iteration like the above would blow up terribly.
-- This is what happened in #12757.
--
-- Ultimately the solution here is to make primitive strings a bit more
-- structured, ensuring that the compiler can't inline in ways that will break
-- user code. One approach to this is described in #8472.
litIsTrivial :: Literal -> Bool
-- c.f. GHC.Core.Utils.exprIsTrivial
litIsTrivial (LitString _) = False
litIsTrivial (LitNumber nt _) = case nt of
LitNumBigNat -> False
LitNumInt -> True
LitNumInt8 -> True
LitNumInt16 -> True
LitNumInt32 -> True
LitNumInt64 -> True
LitNumWord -> True
LitNumWord8 -> True
LitNumWord16 -> True
LitNumWord32 -> True
LitNumWord64 -> True
litIsTrivial _ = True
-- | True if code space does not go bad if we duplicate this literal
litIsDupable :: Platform -> Literal -> Bool
-- c.f. GHC.Core.Utils.exprIsDupable
litIsDupable platform x = case x of
LitNumber nt i -> case nt of
LitNumBigNat -> i <= platformMaxWord platform * 8 -- arbitrary, reasonable
LitNumInt -> True
LitNumInt8 -> True
LitNumInt16 -> True
LitNumInt32 -> True
LitNumInt64 -> True
LitNumWord -> True
LitNumWord8 -> True
LitNumWord16 -> True
LitNumWord32 -> True
LitNumWord64 -> True
LitString _ -> False
_ -> True
litFitsInChar :: Literal -> Bool
litFitsInChar (LitNumber _ i) = i >= toInteger (ord minBound)
&& i <= toInteger (ord maxBound)
litFitsInChar _ = False
litIsLifted :: Literal -> Bool
litIsLifted (LitNumber nt _) = case nt of
LitNumBigNat -> True
LitNumInt -> False
LitNumInt8 -> False
LitNumInt16 -> False
LitNumInt32 -> False
LitNumInt64 -> False
LitNumWord -> False
LitNumWord8 -> False
LitNumWord16 -> False
LitNumWord32 -> False
LitNumWord64 -> False
litIsLifted _ = False
-- Even RUBBISH[LiftedRep] is unlifted, as rubbish values are always evaluated.
{-
Types
~~~~~
-}
-- | Find the Haskell 'Type' the literal occupies
literalType :: Literal -> Type
literalType LitNullAddr = addrPrimTy
literalType (LitChar _) = charPrimTy
literalType (LitString _) = addrPrimTy
literalType (LitFloat _) = floatPrimTy
literalType (LitDouble _) = doublePrimTy
literalType (LitLabel _ _ _) = addrPrimTy
literalType (LitNumber lt _) = case lt of
LitNumBigNat -> byteArrayPrimTy
LitNumInt -> intPrimTy
LitNumInt8 -> int8PrimTy
LitNumInt16 -> int16PrimTy
LitNumInt32 -> int32PrimTy
LitNumInt64 -> int64PrimTy
LitNumWord -> wordPrimTy
LitNumWord8 -> word8PrimTy
LitNumWord16 -> word16PrimTy
LitNumWord32 -> word32PrimTy
LitNumWord64 -> word64PrimTy
-- LitRubbish: see Note [Rubbish literals]
literalType (LitRubbish torc rep)
= mkForAllTy (Bndr a Inferred) (mkTyVarTy a)
where
a = mkTemplateKindVar (typeOrConstraintKind torc rep)
{-
Comparison
~~~~~~~~~~
-}
cmpLit :: Literal -> Literal -> Ordering
cmpLit (LitChar a) (LitChar b) = a `compare` b
cmpLit (LitString a) (LitString b) = a `compare` b
cmpLit (LitNullAddr) (LitNullAddr) = EQ
cmpLit (LitFloat a) (LitFloat b) = a `compare` b
cmpLit (LitDouble a) (LitDouble b) = a `compare` b
cmpLit (LitLabel a _ _) (LitLabel b _ _) = a `lexicalCompareFS` b
cmpLit (LitNumber nt1 a) (LitNumber nt2 b)
= (nt1 `compare` nt2) `mappend` (a `compare` b)
cmpLit (LitRubbish tc1 b1) (LitRubbish tc2 b2) = (tc1 `compare` tc2) `mappend`
(b1 `nonDetCmpType` b2)
cmpLit lit1 lit2
| isTrue# (dataToTag# lit1 <# dataToTag# lit2) = LT
| otherwise = GT
{-
Printing
~~~~~~~~
* See Note [Printing of literals in Core]
-}
pprLiteral :: (SDoc -> SDoc) -> Literal -> SDoc
pprLiteral _ (LitChar c) = pprPrimChar c
pprLiteral _ (LitString s) = pprHsBytes s
pprLiteral _ (LitNullAddr) = text "__NULL"
pprLiteral _ (LitFloat f) = float (fromRat f) <> primFloatSuffix
pprLiteral _ (LitDouble d) = double (fromRat d) <> primDoubleSuffix
pprLiteral _ (LitNumber nt i)
= case nt of
LitNumBigNat -> integer i
LitNumInt -> pprPrimInt i
LitNumInt8 -> pprPrimInt8 i
LitNumInt16 -> pprPrimInt16 i
LitNumInt32 -> pprPrimInt32 i
LitNumInt64 -> pprPrimInt64 i
LitNumWord -> pprPrimWord i
LitNumWord8 -> pprPrimWord8 i
LitNumWord16 -> pprPrimWord16 i
LitNumWord32 -> pprPrimWord32 i
LitNumWord64 -> pprPrimWord64 i
pprLiteral add_par (LitLabel l mb fod) =
add_par (text "__label" <+> b <+> ppr fod)
where b = case mb of
Nothing -> pprHsString l
Just x -> doubleQuotes (ftext l <> text ('@':show x))
pprLiteral _ (LitRubbish torc rep)
= text "RUBBISH" <> pp_tc <> parens (ppr rep)
where
pp_tc = case torc of
TypeLike -> empty
ConstraintLike -> text "[c]"
{-
Note [Printing of literals in Core]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The function `add_par` is used to wrap parenthesis around labels (`LitLabel`),
if they occur in a context requiring an atomic thing (for example function
application).
Although not all Core literals would be valid Haskell, we are trying to stay
as close as possible to Haskell syntax in the printing of Core, to make it
easier for a Haskell user to read Core.
To that end:
* We do print parenthesis around negative `LitInteger`, because we print
`LitInteger` using plain number literals (no prefix or suffix), and plain
number literals in Haskell require parenthesis in contexts like function
application (i.e. `1 - -1` is not valid Haskell).
* We don't print parenthesis around other (negative) literals, because they
aren't needed in GHC/Haskell either (i.e. `1# -# -1#` is accepted by GHC's
parser).
Literal Output Output if context requires
an atom (if different)
------- ------- ----------------------
LitChar 'a'#
LitString "aaa"#
LitNullAddr "__NULL"
LitInt -1#
LitIntN -1#N
LitWord 1##
LitWordN 1##N
LitFloat -1.0#
LitDouble -1.0##
LitBigNat 1
LitLabel "__label" ... ("__label" ...)
LitRubbish "RUBBISH[...]"
Note [Rubbish literals]
~~~~~~~~~~~~~~~~~~~~~~~
Sometimes, we need to cough up a rubbish value of a certain type that is used
in place of dead code we thus aim to eliminate. The value of a dead occurrence
has no effect on the dynamic semantics of the program, so we can pick any value
of the same representation.
Exploiting the results of absence analysis in worker/wrapper is a scenario where
we need such a rubbish value, see examples in Note [Absent fillers] in
GHC.Core.Opt.WorkWrap.Utils.
It's completely undefined what the *value* of a rubbish value is, e.g., we could
pick @0#@ for @Int#@ or @42#@; it mustn't matter where it's inserted into a Core
program. We embed these rubbish values in the 'LitRubbish' case of the 'Literal'
data type. Here are the moving parts:
1. Source Haskell: No way to produce rubbish lits in source syntax. Purely
an IR feature.
2. Core: 'LitRubbish' carries a `Type` of kind RuntimeRep,
describing the runtime representation of the literal (is it a
pointer, an unboxed Double#, or whatever).
We have it that `RUBBISH[rr]` has type `forall (a :: TYPE rr). a`.
See the `LitRubbish` case of `literalType`.
The function GHC.Core.Make.mkLitRubbish makes a Core rubbish literal of
a given type. It obeys the following invariants:
INVARIANT 1: 'rr' has no free variables. Main reason: we don't need to run
substitutions and free variable finders over Literal. The rules around
levity/runtime-rep polymorphism naturally uphold this invariant.
INVARIANT 2: we never make a rubbish literal of type (a ~# b). Reason:
see Note [Core type and coercion invariant] in GHC.Core. We can't substitute
a LitRubbish inside a coercion, so it's best not to make one. They are zero
width anyway, so passing absent ones around costs nothing. If we wanted
an absent filler of type (a ~# b) we should use (Coercion (UnivCo ...)),
but it doesn't seem worth making a new UnivCoProvenance for this purpose.
This is sad, though: see #18983.
3. STG: The type app in `RUBBISH[IntRep] @Int# :: Int#` is erased and we get
the (untyped) 'StgLit' `RUBBISH[IntRep] :: Int#` in STG.
It's treated mostly opaque, with the exception of the Unariser, where we
take apart a case scrutinisation on, or arg occurrence of, e.g.,
`RUBBISH[TupleRep[IntRep,DoubleRep]]` (which may stand in for `(# Int#, Double# #)`)
into its sub-parts `RUBBISH[IntRep]` and `RUBBISH[DoubleRep]`, similar to
unboxed tuples.
See 'unariseLiteral_maybe' and also Note [Post-unarisation invariants].
4. Cmm: We translate 'LitRubbish' to their actual rubbish value in 'cgLit'.
The particulars are boring, and only matter when debugging illicit use of
a rubbish value; see Modes of failure below.
5. Bytecode: In GHC.ByteCode.Asm we just lower it as a 0 literal, because it's
all boxed to the host GC anyway.
6. IfaceSyn: `Literal` is part of `IfaceSyn`, but `Type` really isn't. So in
the passage from Core to Iface we put LitRubbish into its own IfaceExpr data
constructor, IfaceLitRubbish. The remaining constructors of Literal are
fine as IfaceSyn.
Wrinkles
a) Why do we put the `Type` (of kind RuntimeRep) inside the literal? Could
we not instead /apply/ the literal to that RuntimeRep? Alas no, because
then LitRubbish :: forall (rr::RuntimeRep) (a::TYPE rr). a
and that's an ill-formed type because its kind is `TYPE rr`, which escapes
the binding site of `rr`. Annoying.
b) A rubbish literal is not bottom, and replies True to exprOkForSpeculation.
For unboxed types there is no bottom anyway. If we have
let (x::Int#) = RUBBISH[IntRep] @Int#
we want to convert that to a case! We want to leave it as a let, and
probably discard it as dead code soon after because x is unused.
c) We can see a rubbish literal at the head of an application chain.
Most obviously, pretty much every rubbish literal is the head of a
type application e.g. `RUBBISH[IntRep] @Int#`. But see also
Note [How a rubbish literal can be the head of an application]
c) Literal is in Ord, because (and only because) we use Ord on AltCon when
building a TypeMap. Annoying. We use `nonDetCmpType` here; the
non-determinism won't matter because it's only used in TrieMap.
Moreover, rubbish literals should not appear in patterns anyway.
d) Why not lower LitRubbish in CoreToStg? Because it enables us to use
LitRubbish when unarising unboxed sums in the future, and it allows
rubbish values of e.g. VecRep, for which we can't cough up dummy
values in STG.
Modes of failure
----------------
Suppose there is a bug in GHC, and a rubbish value is used after all. That is
undefined behavior, of course, but let us list a few examples for failure modes:
a) For an value of unboxed numeric type like `Int#`, we just use a silly
value like 42#. The error might propagate indefinitely, hence we better
pick a rather unique literal. Same for Word, Floats, Char and VecRep.
b) For AddrRep (like String lits), we emit a null pointer, resulting in a
definitive segfault when accessed.
c) For boxed values, unlifted or not, we use a pointer to a fixed closure,
like `()`, so that the GC has a pointer to follow.
If we use that pointer as an 'Array#', we will likely access fields of the
array that don't exist, and a seg-fault is likely, but not guaranteed.
If we use that pointer as `Either Int Bool`, we might try to access the
'Int' field of the 'Left' constructor (which has the same ConTag as '()'),
which doesn't exists. In the best case, we'll find an invalid pointer in its
position and get a seg-fault, in the worst case the error manifests only one
or two indirections later.
Note [How a rubbish literal can be the head of an application]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this (#19824):
h :: T3 -> Int -> blah
h _ (I# n) = ...
f :: (T1 -> T2 -> T3) -> T4 -> blah
f g x = ....(h (g n s) x)...
Demand analysis finds that h does not use its first argument, and w/w's h to
{-# INLINE h #-}
h a b = case b of I# n -> $wh n
Demand analysis also finds that f does not use its first arg,
so the worker for f look like
$wf x = let g = RUBBISH in
....(h (g n s) x)...
Now we inline g to get:
$wf x = ....(h (RUBBISH n s) x)...
And lo, until we inline `h`, we have that application of
RUBBISH in $wf's RHS. But surely `h` will inline? Not if the
arguments look boring. Well, RUBBISH doesn't look boring. But it
could be a bit more complicated like
f g x = let t = ...(g n s)...
in ...(h t x)...
and now the call looks more boring. Anyway, the point is that we
might reasonably see RUBBISH at the head of an application chain.
It would be fine to rewrite
RUBBISH @(ta->tb->tr) a b ---> RUBBISH @tr
but we don't currently do so.
It is NOT ok to discard the entire continuation:
case RUBBISH @ty of DEFAULT -> blah
does not return RUBBISH!
-}
|