1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
|
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module Language.Haskell.Syntax.Extension
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
-- See Note [Language.Haskell.Syntax.* Hierarchy] for why not GHC.Hs.*
-- | Abstract Haskell syntax for expressions.
module Language.Haskell.Syntax.Expr where
import Language.Haskell.Syntax.Basic
import Language.Haskell.Syntax.Decls
import Language.Haskell.Syntax.Pat
import Language.Haskell.Syntax.Lit
import Language.Haskell.Syntax.Concrete
import Language.Haskell.Syntax.Extension
import Language.Haskell.Syntax.Type
import Language.Haskell.Syntax.Binds
-- others:
import GHC.Types.Fixity (LexicalFixity(Infix), Fixity)
import GHC.Types.SourceText (StringLiteral, SourceText)
import GHC.Unit.Module (ModuleName)
import GHC.Data.FastString (FastString)
-- libraries:
import Data.Data hiding (Fixity(..))
import Data.Bool
import Data.Either
import Data.Eq
import Data.Maybe
import Data.List.NonEmpty ( NonEmpty )
import GHC.Types.Name.Reader
{- Note [RecordDotSyntax field updates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The extensions @OverloadedRecordDot@ @OverloadedRecordUpdate@ together
enable record updates like @a{foo.bar.baz = 1}@. Introducing this
syntax slightly complicates parsing. This note explains how it's done.
In the event a record is being constructed or updated, it's this
production that's in play:
@
aexp1 -> aexp1 '{' fbinds '}' {
...
mkHsRecordPV ... $1 (snd $3)
}
@
@fbinds@ is a list of field bindings. @mkHsRecordPV@ is a function of
the @DisambECP b@ typeclass, see Note [Ambiguous syntactic
categories].
The "normal" rules for an @fbind@ are:
@
fbind
: qvar '=' texp
| qvar
@
These rules compute values of @LHsRecField GhcPs (Located b)@. They
apply in the context of record construction, record updates, record
patterns and record expressions. That is, @b@ ranges over @HsExpr
GhcPs@, @HsPat GhcPs@ and @HsCmd GhcPs@.
When @OverloadedRecordDot@ and @OverloadedRecordUpdate@ are both
enabled, two additional @fbind@ rules are admitted:
@
| field TIGHT_INFIX_PROJ fieldToUpdate '=' texp
| field TIGHT_INFIX_PROJ fieldToUpdate
@
These rules only make sense when parsing record update expressions
(that is, patterns and commands cannot be parsed by these rules and
neither record constructions).
The results of these new rules cannot be represented by @LHsRecField
GhcPs (LHsExpr GhcPs)@ values as the type is defined today. We
minimize modifying existing code by having these new rules calculate
@LHsRecProj GhcPs (LHsExpr GhcPs)@ ("record projection") values
instead:
@
newtype FieldLabelStrings = FieldLabelStrings [XRec p (DotFieldOcc p)]
type RecProj arg = HsFieldBind FieldLabelStrings arg
type LHsRecProj p arg = XRec p (RecProj arg)
@
The @fbind@ rule is then given the type @fbind :: { forall b.
DisambECP b => PV (Fbind b) }@ accommodating both alternatives:
@
type Fbind b = Either
(LHsRecField GhcPs (LocatedA b))
( LHsRecProj GhcPs (LocatedA b))
@
In @data HsExpr p@, the @RecordUpd@ constuctor indicates regular
updates vs. projection updates by means of the @rupd_flds@ member
type, an @Either@ instance:
@
| RecordUpd
{ rupd_ext :: XRecordUpd p
, rupd_expr :: LHsExpr p
, rupd_flds :: Either [LHsRecUpdField p] [LHsRecUpdProj p]
}
@
Here,
@
type RecUpdProj p = RecProj p (LHsExpr p)
type LHsRecUpdProj p = XRec p (RecUpdProj p)
@
and @Left@ values indicating regular record update, @Right@ values
updates desugared to @setField@s.
If @OverloadedRecordUpdate@ is enabled, any updates parsed as
@LHsRecField GhcPs@ values are converted to @LHsRecUpdProj GhcPs@
values (see function @mkRdrRecordUpd@ in 'GHC.Parser.PostProcess').
-}
-- | RecordDotSyntax field updates
type LFieldLabelStrings p = XRec p (FieldLabelStrings p)
newtype FieldLabelStrings p =
FieldLabelStrings [XRec p (DotFieldOcc p)]
-- Field projection updates (e.g. @foo.bar.baz = 1@). See Note
-- [RecordDotSyntax field updates].
type RecProj p arg = HsFieldBind (LFieldLabelStrings p) arg
-- The phantom type parameter @p@ is for symmetry with @LHsRecField p
-- arg@ in the definition of @data Fbind@ (see GHC.Parser.Process).
type LHsRecProj p arg = XRec p (RecProj p arg)
-- These two synonyms are used in the definition of syntax @RecordUpd@
-- below.
type RecUpdProj p = RecProj p (LHsExpr p)
type LHsRecUpdProj p = XRec p (RecUpdProj p)
{-
************************************************************************
* *
\subsection{Expressions proper}
* *
************************************************************************
-}
-- * Expressions proper
-- | Located Haskell Expression
type LHsExpr p = XRec p (HsExpr p)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma' when
-- in a list
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-------------------------
{- Note [NoSyntaxExpr]
~~~~~~~~~~~~~~~~~~~~~~
Syntax expressions can be missing (NoSyntaxExprRn or NoSyntaxExprTc)
for several reasons:
1. As described in Note [Rebindable if]
2. In order to suppress "not in scope: xyz" messages when a bit of
rebindable syntax does not apply. For example, when using an irrefutable
pattern in a BindStmt, we don't need a `fail` operator.
3. Rebindable syntax might just not make sense. For example, a BodyStmt
contains the syntax for `guard`, but that's used only in monad comprehensions.
If we had more of a whiz-bang type system, we might be able to rule this
case out statically.
-}
-- | Syntax Expression
--
-- SyntaxExpr is represents the function used in interpreting rebindable
-- syntax. In the parser, we have no information to supply; in the renamer,
-- we have the name of the function (but see
-- Note [Monad fail : Rebindable syntax, overloaded strings] for a wrinkle)
-- and in the type-checker we have a more elaborate structure 'SyntaxExprTc'.
--
-- In some contexts, rebindable syntax is not implemented, and so we have
-- constructors to represent that possibility in both the renamer and
-- typechecker instantiations.
--
-- E.g. @(>>=)@ is filled in before the renamer by the appropriate 'Name' for
-- @(>>=)@, and then instantiated by the type checker with its type args
-- etc
type family SyntaxExpr p
{-
Note [Record selectors in the AST]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is how record selectors are expressed in GHC's AST:
Example data type
data T = MkT { size :: Int }
Record selectors:
| GhcPs | GhcRn | GhcTc |
----------------------------------------------------------------------------------|
size (assuming one | HsVar | HsRecSel | HsRecSel |
'size' in scope) | | | |
----------------------|--------------|----------------------|---------------------|
.size (assuming | HsProjection | getField @"size" | getField @"size" |
OverloadedRecordDot) | | | |
----------------------|--------------|----------------------|---------------------|
e.size (assuming | HsGetField | getField @"size" e | getField @"size" e |
OverloadedRecordDot) | | | |
NB 1: DuplicateRecordFields makes no difference to the first row of
this table, except that if 'size' is a field of more than one data
type, then a naked use of the record selector 'size' may well be
ambiguous. You have to use a qualified name. And there is no way to do
this if both data types are declared in the same module.
NB 2: The notation getField @"size" e is short for
HsApp (HsAppType (HsVar "getField") (HsWC (HsTyLit (HsStrTy "size")) [])) e.
We track the original parsed syntax via HsExpanded.
-}
{-
Note [Non-overloaded record field selectors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T = MkT { x,y :: Int }
f r x = x + y r
This parses with HsVar for x, y, r on the RHS of f. Later, the renamer
recognises that y in the RHS of f is really a record selector, and
changes it to a HsRecSel. In contrast x is locally bound, shadowing
the record selector, and stays as an HsVar.
The renamer adds the Name of the record selector into the XCFieldOcc
extension field, The typechecker keeps HsRecSel as HsRecSel, and
transforms the record-selector Name to an Id.
-}
-- | A Haskell expression.
data HsExpr p
= HsVar (XVar p)
(LIdP p) -- ^ Variable
-- See Note [Located RdrNames]
| HsUnboundVar (XUnboundVar p)
RdrName -- ^ Unbound variable; also used for "holes"
-- (_ or _x).
-- Turned from HsVar to HsUnboundVar by the
-- renamer, when it finds an out-of-scope
-- variable or hole.
-- The (XUnboundVar p) field becomes an HoleExprRef
-- after typechecking; this is where the
-- erroring expression will be written after
-- solving. See Note [Holes] in GHC.Tc.Types.Constraint.
| HsRecSel (XRecSel p)
(FieldOcc p) -- ^ Variable pointing to record selector
-- See Note [Non-overloaded record field selectors] and
-- Note [Record selectors in the AST]
| HsOverLabel (XOverLabel p) SourceText FastString
-- ^ Overloaded label (Note [Overloaded labels] in GHC.OverloadedLabels)
-- Note [Pragma source text] in GHC.Types.SourceText
| HsIPVar (XIPVar p)
HsIPName -- ^ Implicit parameter (not in use after typechecking)
| HsOverLit (XOverLitE p)
(HsOverLit p) -- ^ Overloaded literals
| HsLit (XLitE p)
(HsLit p) -- ^ Simple (non-overloaded) literals
| HsLam (XLam p)
(MatchGroup p (LHsExpr p))
-- ^ Lambda abstraction. Currently always a single match
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnRarrow',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Lambda-case
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnCase','GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnCases','GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsLamCase (XLamCase p) LamCaseVariant (MatchGroup p (LHsExpr p))
| HsApp (XApp p) (LHsExpr p) (LHsExpr p) -- ^ Application
| HsAppType (XAppTypeE p) -- After typechecking: the type argument
(LHsExpr p)
!(LHsToken "@" p)
(LHsWcType (NoGhcTc p)) -- ^ Visible type application
--
-- Explicit type argument; e.g f @Int x y
-- NB: Has wildcards, but no implicit quantification
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnAt',
-- | Operator applications:
-- NB Bracketed ops such as (+) come out as Vars.
-- NB Sadly, we need an expr for the operator in an OpApp/Section since
-- the renamer may turn a HsVar into HsRecSel or HsUnboundVar
| OpApp (XOpApp p)
(LHsExpr p) -- left operand
(LHsExpr p) -- operator
(LHsExpr p) -- right operand
-- | Negation operator. Contains the negated expression and the name
-- of 'negate'
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnMinus'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| NegApp (XNegApp p)
(LHsExpr p)
(SyntaxExpr p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@,
-- 'GHC.Parser.Annotation.AnnClose' @')'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsPar (XPar p)
!(LHsToken "(" p)
(LHsExpr p) -- ^ Parenthesised expr; see Note [Parens in HsSyn]
!(LHsToken ")" p)
| SectionL (XSectionL p)
(LHsExpr p) -- operand; see Note [Sections in HsSyn]
(LHsExpr p) -- operator
| SectionR (XSectionR p)
(LHsExpr p) -- operator; see Note [Sections in HsSyn]
(LHsExpr p) -- operand
-- | Used for explicit tuples and sections thereof
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- Note [ExplicitTuple]
| ExplicitTuple
(XExplicitTuple p)
[HsTupArg p]
Boxity
-- | Used for unboxed sum types
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'(#'@,
-- 'GHC.Parser.Annotation.AnnVbar', 'GHC.Parser.Annotation.AnnClose' @'#)'@,
--
-- There will be multiple 'GHC.Parser.Annotation.AnnVbar', (1 - alternative) before
-- the expression, (arity - alternative) after it
| ExplicitSum
(XExplicitSum p)
ConTag -- Alternative (one-based)
SumWidth -- Sum arity
(LHsExpr p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnCase',
-- 'GHC.Parser.Annotation.AnnOf','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCase (XCase p)
(LHsExpr p)
(MatchGroup p (LHsExpr p))
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf',
-- 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnThen','GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnElse',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsIf (XIf p) -- GhcPs: this is a Bool; False <=> do not use
-- rebindable syntax
(LHsExpr p) -- predicate
(LHsExpr p) -- then part
(LHsExpr p) -- else part
-- | Multi-way if
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf'
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsMultiIf (XMultiIf p) [LGRHS p (LHsExpr p)]
-- | let(rec)
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet',
-- 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@,'GHC.Parser.Annotation.AnnIn'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsLet (XLet p)
!(LHsToken "let" p)
(HsLocalBinds p)
!(LHsToken "in" p)
(LHsExpr p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDo',
-- 'GHC.Parser.Annotation.AnnOpen', 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsDo (XDo p) -- Type of the whole expression
HsDoFlavour
(XRec p [ExprLStmt p]) -- "do":one or more stmts
-- | Syntactic list: [a,b,c,...]
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@,
-- 'GHC.Parser.Annotation.AnnClose' @']'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- See Note [Empty lists]
| ExplicitList
(XExplicitList p) -- Gives type of components of list
[LHsExpr p]
-- | Record construction
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| RecordCon
{ rcon_ext :: XRecordCon p
, rcon_con :: XRec p (ConLikeP p) -- The constructor
, rcon_flds :: HsRecordBinds p } -- The fields
-- | Record update
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnClose' @'}'@
-- 'GHC.Parser.Annotation.AnnComma, 'GHC.Parser.Annotation.AnnDot',
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| RecordUpd
{ rupd_ext :: XRecordUpd p
, rupd_expr :: LHsExpr p
, rupd_flds :: Either [LHsRecUpdField p] [LHsRecUpdProj p]
}
-- For a type family, the arg types are of the *instance* tycon,
-- not the family tycon
-- | Record field selection e.g @z.x@.
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDot'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- This case only arises when the OverloadedRecordDot langauge
-- extension is enabled. See Note [Record selectors in the AST].
| HsGetField {
gf_ext :: XGetField p
, gf_expr :: LHsExpr p
, gf_field :: XRec p (DotFieldOcc p)
}
-- | Record field selector. e.g. @(.x)@ or @(.x.y)@
--
-- This case only arises when the OverloadedRecordDot langauge
-- extensions is enabled. See Note [Record selectors in the AST].
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpenP'
-- 'GHC.Parser.Annotation.AnnDot', 'GHC.Parser.Annotation.AnnCloseP'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsProjection {
proj_ext :: XProjection p
, proj_flds :: NonEmpty (XRec p (DotFieldOcc p))
}
-- | Expression with an explicit type signature. @e :: type@
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDcolon'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| ExprWithTySig
(XExprWithTySig p)
(LHsExpr p)
(LHsSigWcType (NoGhcTc p))
-- | Arithmetic sequence
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@,
-- 'GHC.Parser.Annotation.AnnComma','GHC.Parser.Annotation.AnnDotdot',
-- 'GHC.Parser.Annotation.AnnClose' @']'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| ArithSeq
(XArithSeq p)
(Maybe (SyntaxExpr p))
-- For OverloadedLists, the fromList witness
(ArithSeqInfo p)
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-----------------------------------------------------------
-- MetaHaskell Extensions
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnOpenE','GHC.Parser.Annotation.AnnOpenEQ',
-- 'GHC.Parser.Annotation.AnnClose','GHC.Parser.Annotation.AnnCloseQ'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsTypedBracket (XTypedBracket p) (LHsExpr p)
| HsUntypedBracket (XUntypedBracket p) (HsQuote p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsTypedSplice (XTypedSplice p) (LHsExpr p) -- `$$z` or `$$(f 4)`
| HsUntypedSplice (XUntypedSplice p) (HsUntypedSplice p)
-----------------------------------------------------------
-- Arrow notation extension
-- | @proc@ notation for Arrows
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnProc',
-- 'GHC.Parser.Annotation.AnnRarrow'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsProc (XProc p)
(LPat p) -- arrow abstraction, proc
(LHsCmdTop p) -- body of the abstraction
-- always has an empty stack
---------------------------------------
-- static pointers extension
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnStatic',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsStatic (XStatic p) -- Free variables of the body, and type after typechecking
(LHsExpr p) -- Body
---------------------------------------
-- Expressions annotated with pragmas, written as {-# ... #-}
| HsPragE (XPragE p) (HsPragE p) (LHsExpr p)
| XExpr !(XXExpr p)
-- Note [Trees That Grow] in Language.Haskell.Syntax.Extension for the
-- general idea, and Note [Rebindable syntax and HsExpansion] in GHC.Hs.Expr
-- for an example of how we use it.
-- ---------------------------------------------------------------------
data DotFieldOcc p
= DotFieldOcc
{ dfoExt :: XCDotFieldOcc p
, dfoLabel :: XRec p FieldLabelString
}
| XDotFieldOcc !(XXDotFieldOcc p)
-- ---------------------------------------------------------------------
-- | A pragma, written as {-# ... #-}, that may appear within an expression.
data HsPragE p
= HsPragSCC (XSCC p)
StringLiteral -- "set cost centre" SCC pragma
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnOpen' @'{-\# GENERATED'@,
-- 'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnColon','GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnMinus',
-- 'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnColon',
-- 'GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnClose' @'\#-}'@
| XHsPragE !(XXPragE p)
-- | Located Haskell Tuple Argument
--
-- 'HsTupArg' is used for tuple sections
-- @(,a,)@ is represented by
-- @ExplicitTuple [Missing ty1, Present a, Missing ty3]@
-- Which in turn stands for @(\x:ty1 \y:ty2. (x,a,y))@
type LHsTupArg id = XRec id (HsTupArg id)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Haskell Tuple Argument
data HsTupArg id
= Present (XPresent id) (LHsExpr id) -- ^ The argument
| Missing (XMissing id) -- ^ The argument is missing, but this is its type
| XTupArg !(XXTupArg id) -- ^ Extension point; see Note [Trees That Grow]
-- in Language.Haskell.Syntax.Extension
-- | Which kind of lambda case are we dealing with?
data LamCaseVariant
= LamCase -- ^ `\case`
| LamCases -- ^ `\cases`
deriving (Data, Eq)
{-
Note [Parens in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~
HsPar (and ParPat in patterns, HsParTy in types) is used as follows
* HsPar is required; the pretty printer does not add parens.
* HsPars are respected when rearranging operator fixities.
So a * (b + c) means what it says (where the parens are an HsPar)
* For ParPat and HsParTy the pretty printer does add parens but this should be
a no-op for ParsedSource, based on the pretty printer round trip feature
introduced in
https://phabricator.haskell.org/rGHC499e43824bda967546ebf95ee33ec1f84a114a7c
* ParPat and HsParTy are pretty printed as '( .. )' regardless of whether or
not they are strictly necessary. This should be addressed when #13238 is
completed, to be treated the same as HsPar.
Note [Sections in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~~~
Sections should always appear wrapped in an HsPar, thus
HsPar (SectionR ...)
The parser parses sections in a wider variety of situations
(See Note [Parsing sections]), but the renamer checks for those
parens. This invariant makes pretty-printing easier; we don't need
a special case for adding the parens round sections.
Note [Rebindable if]
~~~~~~~~~~~~~~~~~~~~
The rebindable syntax for 'if' is a bit special, because when
rebindable syntax is *off* we do not want to treat
(if c then t else e)
as if it was an application (ifThenElse c t e). Why not?
Because we allow an 'if' to return *unboxed* results, thus
if blah then 3# else 4#
whereas that would not be possible using a all to a polymorphic function
(because you can't call a polymorphic function at an unboxed type).
So we use NoSyntaxExpr to mean "use the old built-in typing rule".
A further complication is that, in the `deriving` code, we never want
to use rebindable syntax. So, even in GhcPs, we want to denote whether
to use rebindable syntax or not. This is done via the type instance
for XIf GhcPs.
Note [Record Update HsWrapper]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is a wrapper in RecordUpd which is used for the *required*
constraints for pattern synonyms. This wrapper is created in the
typechecking and is then directly used in the desugaring without
modification.
For example, if we have the record pattern synonym P,
pattern P :: (Show a) => a -> Maybe a
pattern P{x} = Just x
foo = (Just True) { x = False }
then `foo` desugars to something like
foo = case Just True of
P x -> P False
hence we need to provide the correct dictionaries to P's matcher on
the RHS so that we can build the expression.
Note [Located RdrNames]
~~~~~~~~~~~~~~~~~~~~~~~
A number of syntax elements have seemingly redundant locations
attached to them. This is deliberate, to allow transformations making
use of the exact print annotations to easily correlate a Located Name
in the RenamedSource with a Located RdrName in the ParsedSource.
There are unfortunately enough differences between the ParsedSource
and the RenamedSource that the exact print annotations cannot be used
directly with RenamedSource, so this allows a simple mapping to be
used based on the location.
Note [ExplicitTuple]
~~~~~~~~~~~~~~~~~~~~
An ExplicitTuple is never just a data constructor like (,,,).
That is, the `[LHsTupArg p]` argument of `ExplicitTuple` has at least
one `Present` member (and is thus never empty).
A tuple data constructor like () or (,,,) is parsed as an `HsVar`, not an
`ExplicitTuple`, and stays that way. This is important for two reasons:
1. We don't need -XTupleSections for (,,,)
2. The type variables in (,,,) can be instantiated with visible type application.
That is,
(,,) :: forall a b c. a -> b -> c -> (a,b,c)
(True,,) :: forall {b} {c}. b -> c -> (Bool,b,c)
Note that the tuple section has *inferred* arguments, while the data
constructor has *specified* ones.
(See Note [Required, Specified, and Inferred for types] in GHC.Tc.TyCl
for background.)
Sadly, the grammar for this is actually ambiguous, and it's only thanks to the
preference of a shift in a shift/reduce conflict that the parser works as this
Note details. Search for a reference to this Note in GHC.Parser for further
explanation.
Note [Empty lists]
~~~~~~~~~~~~~~~~~~
An empty list could be considered either a data constructor (stored with
HsVar) or an ExplicitList. This Note describes how empty lists flow through the
various phases and why.
Parsing
-------
An empty list is parsed by the sysdcon nonterminal. It thus comes to life via
HsVar nilDataCon (defined in GHC.Builtin.Types). A freshly-parsed (HsExpr GhcPs) empty list
is never a ExplicitList.
Renaming
--------
If -XOverloadedLists is enabled, we must type-check the empty list as if it
were a call to fromListN. (This is true regardless of the setting of
-XRebindableSyntax.) This is very easy if the empty list is an ExplicitList,
but an annoying special case if it's an HsVar. So the renamer changes a
HsVar nilDataCon to an ExplicitList [], but only if -XOverloadedLists is on.
(Why not always? Read on, dear friend.) This happens in the HsVar case of rnExpr.
Type-checking
-------------
We want to accept an expression like [] @Int. To do this, we must infer that
[] :: forall a. [a]. This is easy if [] is a HsVar with the right DataCon inside.
However, the type-checking for explicit lists works differently: [x,y,z] is never
polymorphic. Instead, we unify the types of x, y, and z together, and use the
unified type as the argument to the cons and nil constructors. Thus, treating
[] as an empty ExplicitList in the type-checker would prevent [] @Int from working.
However, if -XOverloadedLists is on, then [] @Int really shouldn't be allowed:
it's just like fromListN 0 [] @Int. Since
fromListN :: forall list. IsList list => Int -> [Item list] -> list
that expression really should be rejected. Thus, the renamer's behaviour is
exactly what we want: treat [] as a datacon when -XNoOverloadedLists, and as
an empty ExplicitList when -XOverloadedLists.
See also #13680, which requested [] @Int to work.
-}
{-
HsSyn records exactly where the user put parens, with HsPar.
So generally speaking we print without adding any parens.
However, some code is internally generated, and in some places
parens are absolutely required; so for these places we use
pprParendLExpr (but don't print double parens of course).
For operator applications we don't add parens, because the operator
fixities should do the job, except in debug mode (-dppr-debug) so we
can see the structure of the parse tree.
-}
{-
************************************************************************
* *
\subsection{Commands (in arrow abstractions)}
* *
************************************************************************
We re-use HsExpr to represent these.
-}
-- | Located Haskell Command (for arrow syntax)
type LHsCmd id = XRec id (HsCmd id)
-- | Haskell Command (e.g. a "statement" in an Arrow proc block)
data HsCmd id
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.Annlarrowtail',
-- 'GHC.Parser.Annotation.Annrarrowtail','GHC.Parser.Annotation.AnnLarrowtail',
-- 'GHC.Parser.Annotation.AnnRarrowtail'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
= HsCmdArrApp -- Arrow tail, or arrow application (f -< arg)
(XCmdArrApp id) -- type of the arrow expressions f,
-- of the form a t t', where arg :: t
(LHsExpr id) -- arrow expression, f
(LHsExpr id) -- input expression, arg
HsArrAppType -- higher-order (-<<) or first-order (-<)
Bool -- True => right-to-left (f -< arg)
-- False => left-to-right (arg >- f)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpenB' @'(|'@,
-- 'GHC.Parser.Annotation.AnnCloseB' @'|)'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdArrForm -- Command formation, (| e cmd1 .. cmdn |)
(XCmdArrForm id)
(LHsExpr id) -- The operator.
-- After type-checking, a type abstraction to be
-- applied to the type of the local environment tuple
LexicalFixity -- Whether the operator appeared prefix or infix when
-- parsed.
(Maybe Fixity) -- fixity (filled in by the renamer), for forms that
-- were converted from OpApp's by the renamer
[LHsCmdTop id] -- argument commands
| HsCmdApp (XCmdApp id)
(LHsCmd id)
(LHsExpr id)
| HsCmdLam (XCmdLam id)
(MatchGroup id (LHsCmd id)) -- kappa
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnRarrow',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdPar (XCmdPar id)
!(LHsToken "(" id)
(LHsCmd id) -- parenthesised command
!(LHsToken ")" id)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@,
-- 'GHC.Parser.Annotation.AnnClose' @')'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdCase (XCmdCase id)
(LHsExpr id)
(MatchGroup id (LHsCmd id)) -- bodies are HsCmd's
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnCase',
-- 'GHC.Parser.Annotation.AnnOf','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Lambda-case
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnCase','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnCases','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdLamCase (XCmdLamCase id) LamCaseVariant
(MatchGroup id (LHsCmd id)) -- bodies are HsCmd's
| HsCmdIf (XCmdIf id)
(SyntaxExpr id) -- cond function
(LHsExpr id) -- predicate
(LHsCmd id) -- then part
(LHsCmd id) -- else part
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf',
-- 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnThen','GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnElse',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdLet (XCmdLet id)
!(LHsToken "let" id)
(HsLocalBinds id) -- let(rec)
!(LHsToken "in" id)
(LHsCmd id)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet',
-- 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@,'GHC.Parser.Annotation.AnnIn'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdDo (XCmdDo id) -- Type of the whole expression
(XRec id [CmdLStmt id])
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDo',
-- 'GHC.Parser.Annotation.AnnOpen', 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XCmd !(XXCmd id) -- Extension point; see Note [Trees That Grow]
-- in Language.Haskell.Syntax.Extension
-- | Haskell arrow application type.
data HsArrAppType
-- | First order arrow application '-<'
= HsHigherOrderApp
-- | Higher order arrow application '-<<'
| HsFirstOrderApp
deriving Data
{- | Top-level command, introducing a new arrow.
This may occur inside a proc (where the stack is empty) or as an
argument of a command-forming operator.
-}
-- | Located Haskell Top-level Command
type LHsCmdTop p = XRec p (HsCmdTop p)
-- | Haskell Top-level Command
data HsCmdTop p
= HsCmdTop (XCmdTop p)
(LHsCmd p)
| XCmdTop !(XXCmdTop p) -- Extension point; see Note [Trees That Grow]
-- in Language.Haskell.Syntax.Extension
-----------------------
{-
************************************************************************
* *
\subsection{Record binds}
* *
************************************************************************
-}
-- | Haskell Record Bindings
type HsRecordBinds p = HsRecFields p (LHsExpr p)
{-
************************************************************************
* *
\subsection{@Match@, @GRHSs@, and @GRHS@ datatypes}
* *
************************************************************************
@Match@es are sets of pattern bindings and right hand sides for
functions, patterns or case branches. For example, if a function @g@
is defined as:
\begin{verbatim}
g (x,y) = y
g ((x:ys),y) = y+1,
\end{verbatim}
then \tr{g} has two @Match@es: @(x,y) = y@ and @((x:ys),y) = y+1@.
It is always the case that each element of an @[Match]@ list has the
same number of @pats@s inside it. This corresponds to saying that
a function defined by pattern matching must have the same number of
patterns in each equation.
-}
data MatchGroup p body
= MG { mg_ext :: XMG p body -- Post-typechecker, types of args and result, and origin
, mg_alts :: XRec p [LMatch p body] } -- The alternatives
-- The type is the type of the entire group
-- t1 -> ... -> tn -> tr
-- where there are n patterns
| XMatchGroup !(XXMatchGroup p body)
-- | Located Match
type LMatch id body = XRec id (Match id body)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi' when in a
-- list
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
data Match p body
= Match {
m_ext :: XCMatch p body,
m_ctxt :: HsMatchContext p,
-- See Note [m_ctxt in Match]
m_pats :: [LPat p], -- The patterns
m_grhss :: (GRHSs p body)
}
| XMatch !(XXMatch p body)
{-
Note [m_ctxt in Match]
~~~~~~~~~~~~~~~~~~~~~~
A Match can occur in a number of contexts, such as a FunBind, HsCase, HsLam and
so on.
In order to simplify tooling processing and pretty print output, the provenance
is captured in an HsMatchContext.
This is particularly important for the exact print annotations for a
multi-equation FunBind.
The parser initially creates a FunBind with a single Match in it for
every function definition it sees.
These are then grouped together by getMonoBind into a single FunBind,
where all the Matches are combined.
In the process, all the original FunBind fun_id's bar one are
discarded, including the locations.
This causes a problem for source to source conversions via exact print
annotations, so the original fun_ids and infix flags are preserved in
the Match, when it originates from a FunBind.
Example infix function definition requiring individual exact print
annotations
(&&& ) [] [] = []
xs &&& [] = xs
( &&& ) [] ys = ys
-}
isInfixMatch :: Match id body -> Bool
isInfixMatch match = case m_ctxt match of
FunRhs {mc_fixity = Infix} -> True
_ -> False
-- | Guarded Right-Hand Sides
--
-- GRHSs are used both for pattern bindings and for Matches
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnWhere',
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose'
-- 'GHC.Parser.Annotation.AnnRarrow','GHC.Parser.Annotation.AnnSemi'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
data GRHSs p body
= GRHSs {
grhssExt :: XCGRHSs p body,
grhssGRHSs :: [LGRHS p body], -- ^ Guarded RHSs
grhssLocalBinds :: HsLocalBinds p -- ^ The where clause
}
| XGRHSs !(XXGRHSs p body)
-- | Located Guarded Right-Hand Side
type LGRHS id body = XRec id (GRHS id body)
-- | Guarded Right Hand Side.
data GRHS p body = GRHS (XCGRHS p body)
[GuardLStmt p] -- Guards
body -- Right hand side
| XGRHS !(XXGRHS p body)
-- We know the list must have at least one @Match@ in it.
{-
************************************************************************
* *
\subsection{Do stmts and list comprehensions}
* *
************************************************************************
-}
-- | Located @do@ block Statement
type LStmt id body = XRec id (StmtLR id id body)
-- | Located Statement with separate Left and Right id's
type LStmtLR idL idR body = XRec idL (StmtLR idL idR body)
-- | @do@ block Statement
type Stmt id body = StmtLR id id body
-- | Command Located Statement
type CmdLStmt id = LStmt id (LHsCmd id)
-- | Command Statement
type CmdStmt id = Stmt id (LHsCmd id)
-- | Expression Located Statement
type ExprLStmt id = LStmt id (LHsExpr id)
-- | Expression Statement
type ExprStmt id = Stmt id (LHsExpr id)
-- | Guard Located Statement
type GuardLStmt id = LStmt id (LHsExpr id)
-- | Guard Statement
type GuardStmt id = Stmt id (LHsExpr id)
-- | Ghci Located Statement
type GhciLStmt id = LStmt id (LHsExpr id)
-- | Ghci Statement
type GhciStmt id = Stmt id (LHsExpr id)
-- The SyntaxExprs in here are used *only* for do-notation and monad
-- comprehensions, which have rebindable syntax. Otherwise they are unused.
-- | Exact print annotations when in qualifier lists or guards
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnComma','GHC.Parser.Annotation.AnnThen',
-- 'GHC.Parser.Annotation.AnnBy','GHC.Parser.Annotation.AnnBy',
-- 'GHC.Parser.Annotation.AnnGroup','GHC.Parser.Annotation.AnnUsing'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
data StmtLR idL idR body -- body should always be (LHs**** idR)
= LastStmt -- Always the last Stmt in ListComp, MonadComp,
-- and (after the renamer, see GHC.Rename.Expr.checkLastStmt) DoExpr, MDoExpr
-- Not used for GhciStmtCtxt, PatGuard, which scope over other stuff
(XLastStmt idL idR body)
body
(Maybe Bool) -- Whether return was stripped
-- Just True <=> return with a dollar was stripped by ApplicativeDo
-- Just False <=> return without a dollar was stripped by ApplicativeDo
-- Nothing <=> Nothing was stripped
(SyntaxExpr idR) -- The return operator
-- The return operator is used only for MonadComp
-- For ListComp we use the baked-in 'return'
-- For DoExpr, MDoExpr, we don't apply a 'return' at all
-- See Note [Monad Comprehensions]
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLarrow'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| BindStmt (XBindStmt idL idR body)
-- ^ Post renaming has optional fail and bind / (>>=) operator.
-- Post typechecking, also has multiplicity of the argument
-- and the result type of the function passed to bind;
-- that is, (P, S) in (>>=) :: Q -> (R % P -> S) -> T
-- See Note [The type of bind in Stmts]
(LPat idL)
body
-- | 'ApplicativeStmt' represents an applicative expression built with
-- '<$>' and '<*>'. It is generated by the renamer, and is desugared into the
-- appropriate applicative expression by the desugarer, but it is intended
-- to be invisible in error messages.
--
-- For full details, see Note [ApplicativeDo] in "GHC.Rename.Expr"
--
| ApplicativeStmt
(XApplicativeStmt idL idR body) -- Post typecheck, Type of the body
[ ( SyntaxExpr idR
, ApplicativeArg idL) ]
-- [(<$>, e1), (<*>, e2), ..., (<*>, en)]
(Maybe (SyntaxExpr idR)) -- 'join', if necessary
| BodyStmt (XBodyStmt idL idR body) -- Post typecheck, element type
-- of the RHS (used for arrows)
body -- See Note [BodyStmt]
(SyntaxExpr idR) -- The (>>) operator
(SyntaxExpr idR) -- The `guard` operator; used only in MonadComp
-- See notes [Monad Comprehensions]
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet'
-- 'GHC.Parser.Annotation.AnnOpen' @'{'@,'GHC.Parser.Annotation.AnnClose' @'}'@,
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| LetStmt (XLetStmt idL idR body) (HsLocalBindsLR idL idR)
-- ParStmts only occur in a list/monad comprehension
| ParStmt (XParStmt idL idR body) -- Post typecheck,
-- S in (>>=) :: Q -> (R -> S) -> T
[ParStmtBlock idL idR]
(HsExpr idR) -- Polymorphic `mzip` for monad comprehensions
(SyntaxExpr idR) -- The `>>=` operator
-- See notes [Monad Comprehensions]
-- After renaming, the ids are the binders
-- bound by the stmts and used after them
| TransStmt {
trS_ext :: XTransStmt idL idR body, -- Post typecheck,
-- R in (>>=) :: Q -> (R -> S) -> T
trS_form :: TransForm,
trS_stmts :: [ExprLStmt idL], -- Stmts to the *left* of the 'group'
-- which generates the tuples to be grouped
trS_bndrs :: [(IdP idR, IdP idR)], -- See Note [TransStmt binder map]
trS_using :: LHsExpr idR,
trS_by :: Maybe (LHsExpr idR), -- "by e" (optional)
-- Invariant: if trS_form = GroupBy, then grp_by = Just e
trS_ret :: SyntaxExpr idR, -- The monomorphic 'return' function for
-- the inner monad comprehensions
trS_bind :: SyntaxExpr idR, -- The '(>>=)' operator
trS_fmap :: HsExpr idR -- The polymorphic 'fmap' function for desugaring
-- Only for 'group' forms
-- Just a simple HsExpr, because it's
-- too polymorphic for tcSyntaxOp
} -- See Note [Monad Comprehensions]
-- Recursive statement (see Note [How RecStmt works] below)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnRec'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| RecStmt
{ recS_ext :: XRecStmt idL idR body
, recS_stmts :: XRec idR [LStmtLR idL idR body]
-- Assume XRec is the same for idL and idR, pick one arbitrarily
-- The next two fields are only valid after renaming
, recS_later_ids :: [IdP idR]
-- The ids are a subset of the variables bound by the
-- stmts that are used in stmts that follow the RecStmt
, recS_rec_ids :: [IdP idR]
-- Ditto, but these variables are the "recursive" ones,
-- that are used before they are bound in the stmts of
-- the RecStmt.
-- An Id can be in both groups
-- Both sets of Ids are (now) treated monomorphically
-- See Note [How RecStmt works] for why they are separate
-- Rebindable syntax
, recS_bind_fn :: SyntaxExpr idR -- The bind function
, recS_ret_fn :: SyntaxExpr idR -- The return function
, recS_mfix_fn :: SyntaxExpr idR -- The mfix function
}
| XStmtLR !(XXStmtLR idL idR body)
data TransForm -- The 'f' below is the 'using' function, 'e' is the by function
= ThenForm -- then f or then f by e (depending on trS_by)
| GroupForm -- then group using f or then group by e using f (depending on trS_by)
deriving Data
-- | Parenthesised Statement Block
data ParStmtBlock idL idR
= ParStmtBlock
(XParStmtBlock idL idR)
[ExprLStmt idL]
[IdP idR] -- The variables to be returned
(SyntaxExpr idR) -- The return operator
| XParStmtBlock !(XXParStmtBlock idL idR)
-- | The fail operator
--
-- This is used for `.. <-` "bind statements" in do notation, including
-- non-monadic "binds" in applicative.
--
-- The fail operator is 'Just expr' if it potentially fail monadically. if the
-- pattern match cannot fail, or shouldn't fail monadically (regular incomplete
-- pattern exception), it is 'Nothing'.
--
-- See Note [Monad fail : Rebindable syntax, overloaded strings] for the type of
-- expression in the 'Just' case, and why it is so.
--
-- See Note [Failing pattern matches in Stmts] for which contexts for
-- '@BindStmt@'s should use the monadic fail and which shouldn't.
type FailOperator id = Maybe (SyntaxExpr id)
-- | Applicative Argument
data ApplicativeArg idL
= ApplicativeArgOne -- A single statement (BindStmt or BodyStmt)
{ xarg_app_arg_one :: XApplicativeArgOne idL
-- ^ The fail operator, after renaming
--
-- The fail operator is needed if this is a BindStmt
-- where the pattern can fail. E.g.:
-- (Just a) <- stmt
-- The fail operator will be invoked if the pattern
-- match fails.
-- It is also used for guards in MonadComprehensions.
-- The fail operator is Nothing
-- if the pattern match can't fail
, app_arg_pattern :: LPat idL -- WildPat if it was a BodyStmt (see below)
, arg_expr :: LHsExpr idL
, is_body_stmt :: Bool
-- ^ True <=> was a BodyStmt,
-- False <=> was a BindStmt.
-- See Note [Applicative BodyStmt]
}
| ApplicativeArgMany -- do { stmts; return vars }
{ xarg_app_arg_many :: XApplicativeArgMany idL
, app_stmts :: [ExprLStmt idL] -- stmts
, final_expr :: HsExpr idL -- return (v1,..,vn), or just (v1,..,vn)
, bv_pattern :: LPat idL -- (v1,...,vn)
, stmt_context :: HsDoFlavour
-- ^ context of the do expression, used in pprArg
}
| XApplicativeArg !(XXApplicativeArg idL)
{-
Note [The type of bind in Stmts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some Stmts, notably BindStmt, keep the (>>=) bind operator.
We do NOT assume that it has type
(>>=) :: m a -> (a -> m b) -> m b
In some cases (see #303, #1537) it might have a more
exotic type, such as
(>>=) :: m i j a -> (a -> m j k b) -> m i k b
So we must be careful not to make assumptions about the type.
In particular, the monad may not be uniform throughout.
Note [TransStmt binder map]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The [(idR,idR)] in a TransStmt behaves as follows:
* Before renaming: []
* After renaming:
[ (x27,x27), ..., (z35,z35) ]
These are the variables
bound by the stmts to the left of the 'group'
and used either in the 'by' clause,
or in the stmts following the 'group'
Each item is a pair of identical variables.
* After typechecking:
[ (x27:Int, x27:[Int]), ..., (z35:Bool, z35:[Bool]) ]
Each pair has the same unique, but different *types*.
Note [BodyStmt]
~~~~~~~~~~~~~~~
BodyStmts are a bit tricky, because what they mean
depends on the context. Consider the following contexts:
A do expression of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E any_ty: do { ....; E; ... }
E :: m any_ty
Translation: E >> ...
A list comprehensions of type [elt_ty]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E Bool: [ .. | .... E ]
[ .. | ..., E, ... ]
[ .. | .... | ..., E | ... ]
E :: Bool
Translation: if E then fail else ...
A guard list, guarding a RHS of type rhs_ty
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E BooParStmtBlockl: f x | ..., E, ... = ...rhs...
E :: Bool
Translation: if E then fail else ...
A monad comprehension of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E Bool: [ .. | .... E ]
E :: Bool
Translation: guard E >> ...
Array comprehensions are handled like list comprehensions.
Note [How RecStmt works]
~~~~~~~~~~~~~~~~~~~~~~~~
Example:
HsDo [ BindStmt x ex
, RecStmt { recS_rec_ids = [a, c]
, recS_stmts = [ BindStmt b (return (a,c))
, LetStmt a = ...b...
, BindStmt c ec ]
, recS_later_ids = [a, b]
, return (a b) ]
Here, the RecStmt binds a,b,c; but
- Only a,b are used in the stmts *following* the RecStmt,
- Only a,c are used in the stmts *inside* the RecStmt
*before* their bindings
Why do we need *both* rec_ids and later_ids? For monads they could be
combined into a single set of variables, but not for arrows. That
follows from the types of the respective feedback operators:
mfix :: MonadFix m => (a -> m a) -> m a
loop :: ArrowLoop a => a (b,d) (c,d) -> a b c
* For mfix, the 'a' covers the union of the later_ids and the rec_ids
* For 'loop', 'c' is the later_ids and 'd' is the rec_ids
Note [Typing a RecStmt]
~~~~~~~~~~~~~~~~~~~~~~~
A (RecStmt stmts) types as if you had written
(v1,..,vn, _, ..., _) <- mfix (\~(_, ..., _, r1, ..., rm) ->
do { stmts
; return (v1,..vn, r1, ..., rm) })
where v1..vn are the later_ids
r1..rm are the rec_ids
Note [Monad Comprehensions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Monad comprehensions require separate functions like 'return' and
'>>=' for desugaring. These functions are stored in the statements
used in monad comprehensions. For example, the 'return' of the 'LastStmt'
expression is used to lift the body of the monad comprehension:
[ body | stmts ]
=>
stmts >>= \bndrs -> return body
In transform and grouping statements ('then ..' and 'then group ..') the
'return' function is required for nested monad comprehensions, for example:
[ body | stmts, then f, rest ]
=>
f [ env | stmts ] >>= \bndrs -> [ body | rest ]
BodyStmts require the 'Control.Monad.guard' function for boolean
expressions:
[ body | exp, stmts ]
=>
guard exp >> [ body | stmts ]
Parallel statements require the 'Control.Monad.Zip.mzip' function:
[ body | stmts1 | stmts2 | .. ]
=>
mzip stmts1 (mzip stmts2 (..)) >>= \(bndrs1, (bndrs2, ..)) -> return body
In any other context than 'MonadComp', the fields for most of these
'SyntaxExpr's stay bottom.
Note [Applicative BodyStmt]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
(#12143) For the purposes of ApplicativeDo, we treat any BodyStmt
as if it was a BindStmt with a wildcard pattern. For example,
do
x <- A
B
return x
is transformed as if it were
do
x <- A
_ <- B
return x
so it transforms to
(\(x,_) -> x) <$> A <*> B
But we have to remember when we treat a BodyStmt like a BindStmt,
because in error messages we want to emit the original syntax the user
wrote, not our internal representation. So ApplicativeArgOne has a
Bool flag that is True when the original statement was a BodyStmt, so
that we can pretty-print it correctly.
-}
{-
************************************************************************
* *
Template Haskell quotation brackets
* *
************************************************************************
-}
{-
Note [Quasi-quote overview]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The "quasi-quote" extension is described by Geoff Mainland's paper
"Why it's nice to be quoted: quasiquoting for Haskell" (Haskell
Workshop 2007).
Briefly, one writes
[p| stuff |]
and the arbitrary string "stuff" gets parsed by the parser 'p', whose type
should be Language.Haskell.TH.Quote.QuasiQuoter. 'p' must be defined in
another module, because we are going to run it here. It's a bit like an
/untyped/ TH splice where the parser is applied the "stuff" as a string, thus:
$(p "stuff")
Notice that it's an /untyped/ TH splice: it can occur in patterns and types, as well
as in expressions; and it runs in the renamer.
-}
-- | Haskell Splice
data HsUntypedSplice id
= HsUntypedSpliceExpr -- $z or $(f 4)
(XUntypedSpliceExpr id)
(LHsExpr id)
| HsQuasiQuote -- See Note [Quasi-quote overview]
(XQuasiQuote id)
(IdP id) -- The quoter (the bit between `[` and `|`)
(XRec id FastString) -- The enclosed string
| XUntypedSplice !(XXUntypedSplice id) -- Extension point; see Note [Trees That Grow]
-- in Language.Haskell.Syntax.Extension
-- | Haskell (Untyped) Quote = Expr + Pat + Type + Var
data HsQuote p
= ExpBr (XExpBr p) (LHsExpr p) -- [| expr |]
| PatBr (XPatBr p) (LPat p) -- [p| pat |]
| DecBrL (XDecBrL p) [LHsDecl p] -- [d| decls |]; result of parser
| DecBrG (XDecBrG p) (HsGroup p) -- [d| decls |]; result of renamer
| TypBr (XTypBr p) (LHsType p) -- [t| type |]
| VarBr (XVarBr p) Bool (LIdP p) -- True: 'x, False: ''T
| XQuote !(XXQuote p) -- Extension point; see Note [Trees That Grow]
-- in Language.Haskell.Syntax.Extension
{-
************************************************************************
* *
\subsection{Enumerations and list comprehensions}
* *
************************************************************************
-}
-- | Arithmetic Sequence Information
data ArithSeqInfo id
= From (LHsExpr id)
| FromThen (LHsExpr id)
(LHsExpr id)
| FromTo (LHsExpr id)
(LHsExpr id)
| FromThenTo (LHsExpr id)
(LHsExpr id)
(LHsExpr id)
-- AZ: Should ArithSeqInfo have a TTG extension?
{-
************************************************************************
* *
\subsection{HsMatchCtxt}
* *
************************************************************************
-}
-- | Haskell Match Context
--
-- Context of a pattern match. This is more subtle than it would seem. See
-- Note [FunBind vs PatBind].
data HsMatchContext p
= FunRhs
-- ^ A pattern matching on an argument of a
-- function binding
{ mc_fun :: LIdP (NoGhcTc p) -- ^ function binder of @f@
-- See Note [mc_fun field of FunRhs]
-- See #20415 for a long discussion about
-- this field and why it uses NoGhcTc.
, mc_fixity :: LexicalFixity -- ^ fixing of @f@
, mc_strictness :: SrcStrictness -- ^ was @f@ banged?
-- See Note [FunBind vs PatBind]
}
| LambdaExpr -- ^Patterns of a lambda
| CaseAlt -- ^Patterns and guards in a case alternative
| LamCaseAlt LamCaseVariant -- ^Patterns and guards in @\case@ and @\cases@
| IfAlt -- ^Guards of a multi-way if alternative
| ArrowMatchCtxt -- ^A pattern match inside arrow notation
HsArrowMatchContext
| PatBindRhs -- ^A pattern binding eg [y] <- e = e
| PatBindGuards -- ^Guards of pattern bindings, e.g.,
-- (Just b) | Just _ <- x = e
-- | otherwise = e'
| RecUpd -- ^Record update [used only in GHC.HsToCore.Expr to
-- tell matchWrapper what sort of
-- runtime error message to generate]
| StmtCtxt (HsStmtContext p) -- ^Pattern of a do-stmt, list comprehension,
-- pattern guard, etc
| ThPatSplice -- ^A Template Haskell pattern splice
| ThPatQuote -- ^A Template Haskell pattern quotation [p| (a,b) |]
| PatSyn -- ^A pattern synonym declaration
{-
Note [mc_fun field of FunRhs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The mc_fun field of FunRhs has type `LIdP (NoGhcTc p)`, which means it will be
a `RdrName` in pass `GhcPs`, a `Name` in `GhcRn`, and (importantly) still a
`Name` in `GhcTc` -- not an `Id`. See Note [NoGhcTc] in GHC.Hs.Extension.
Why a `Name` in the typechecker phase? Because:
* A `Name` is all we need, as it turns out.
* Using an `Id` involves knot-tying in the monad, which led to #22695.
See #20415 for a long discussion.
-}
isPatSynCtxt :: HsMatchContext p -> Bool
isPatSynCtxt ctxt =
case ctxt of
PatSyn -> True
_ -> False
-- | Haskell Statement Context.
data HsStmtContext p
= HsDoStmt HsDoFlavour -- ^Context for HsDo (do-notation and comprehensions)
| PatGuard (HsMatchContext p) -- ^Pattern guard for specified thing
| ParStmtCtxt (HsStmtContext p) -- ^A branch of a parallel stmt
| TransStmtCtxt (HsStmtContext p) -- ^A branch of a transform stmt
| ArrowExpr -- ^do-notation in an arrow-command context
-- | Haskell arrow match context.
data HsArrowMatchContext
= ProcExpr -- ^ A proc expression
| ArrowCaseAlt -- ^ A case alternative inside arrow notation
| ArrowLamCaseAlt LamCaseVariant -- ^ A \case or \cases alternative inside arrow notation
| KappaExpr -- ^ An arrow kappa abstraction
data HsDoFlavour
= DoExpr (Maybe ModuleName) -- ^[ModuleName.]do { ... }
| MDoExpr (Maybe ModuleName) -- ^[ModuleName.]mdo { ... } ie recursive do-expression
| GhciStmtCtxt -- ^A command-line Stmt in GHCi pat <- rhs
| ListComp
| MonadComp
qualifiedDoModuleName_maybe :: HsStmtContext p -> Maybe ModuleName
qualifiedDoModuleName_maybe ctxt = case ctxt of
HsDoStmt (DoExpr m) -> m
HsDoStmt (MDoExpr m) -> m
_ -> Nothing
isComprehensionContext :: HsStmtContext id -> Bool
-- Uses comprehension syntax [ e | quals ]
isComprehensionContext (ParStmtCtxt c) = isComprehensionContext c
isComprehensionContext (TransStmtCtxt c) = isComprehensionContext c
isComprehensionContext ArrowExpr = False
isComprehensionContext (PatGuard _) = False
isComprehensionContext (HsDoStmt flavour) = isDoComprehensionContext flavour
isDoComprehensionContext :: HsDoFlavour -> Bool
isDoComprehensionContext GhciStmtCtxt = False
isDoComprehensionContext (DoExpr _) = False
isDoComprehensionContext (MDoExpr _) = False
isDoComprehensionContext ListComp = True
isDoComprehensionContext MonadComp = True
-- | Is this a monadic context?
isMonadStmtContext :: HsStmtContext id -> Bool
isMonadStmtContext (ParStmtCtxt ctxt) = isMonadStmtContext ctxt
isMonadStmtContext (TransStmtCtxt ctxt) = isMonadStmtContext ctxt
isMonadStmtContext (HsDoStmt flavour) = isMonadDoStmtContext flavour
isMonadStmtContext (PatGuard _) = False
isMonadStmtContext ArrowExpr = False
isMonadDoStmtContext :: HsDoFlavour -> Bool
isMonadDoStmtContext ListComp = False
isMonadDoStmtContext MonadComp = True
isMonadDoStmtContext DoExpr{} = True
isMonadDoStmtContext MDoExpr{} = True
isMonadDoStmtContext GhciStmtCtxt = True
isMonadCompContext :: HsStmtContext id -> Bool
isMonadCompContext (HsDoStmt flavour) = isMonadDoCompContext flavour
isMonadCompContext (ParStmtCtxt _) = False
isMonadCompContext (TransStmtCtxt _) = False
isMonadCompContext (PatGuard _) = False
isMonadCompContext ArrowExpr = False
isMonadDoCompContext :: HsDoFlavour -> Bool
isMonadDoCompContext MonadComp = True
isMonadDoCompContext ListComp = False
isMonadDoCompContext GhciStmtCtxt = False
isMonadDoCompContext (DoExpr _) = False
isMonadDoCompContext (MDoExpr _) = False
|