1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
|
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module Language.Haskell.Syntax.Extension
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
GHC.Hs.Type: Abstract syntax: user-defined types
-}
-- See Note [Language.Haskell.Syntax.* Hierarchy] for why not GHC.Hs.*
module Language.Haskell.Syntax.Type (
HsScaled(..),
hsMult, hsScaledThing,
HsArrow(..),
HsLinearArrowTokens(..),
HsType(..), LHsType, HsKind, LHsKind,
HsForAllTelescope(..), HsTyVarBndr(..), LHsTyVarBndr,
LHsQTyVars(..),
HsOuterTyVarBndrs(..), HsOuterFamEqnTyVarBndrs, HsOuterSigTyVarBndrs,
HsWildCardBndrs(..),
HsPatSigType(..),
HsSigType(..), LHsSigType, LHsSigWcType, LHsWcType,
HsTupleSort(..),
HsContext, LHsContext,
HsTyLit(..),
HsIPName(..), hsIPNameFS,
HsArg(..),
LHsTypeArg,
LBangType, BangType,
HsSrcBang(..),
PromotionFlag(..), isPromoted,
ConDeclField(..), LConDeclField,
HsConDetails(..), noTypeArgs,
FieldOcc(..), LFieldOcc,
AmbiguousFieldOcc(..), LAmbiguousFieldOcc,
mapHsOuterImplicit,
hsQTvExplicit,
isHsKindedTyVar,
hsPatSigType,
) where
import {-# SOURCE #-} Language.Haskell.Syntax.Expr ( HsUntypedSplice )
import Language.Haskell.Syntax.Concrete
import Language.Haskell.Syntax.Extension
import GHC.Types.Name.Reader ( RdrName )
import GHC.Core.DataCon( HsSrcBang(..) )
import GHC.Core.Type (Specificity)
import GHC.Types.SrcLoc (SrcSpan)
import GHC.Hs.Doc (LHsDoc)
import GHC.Data.FastString (FastString)
import Data.Data hiding ( Fixity, Prefix, Infix )
import Data.Void
import Data.Maybe
import Data.Eq
import Data.Bool
import Data.Char
import Prelude (Integer)
{-
************************************************************************
* *
\subsection{Promotion flag}
* *
************************************************************************
-}
-- | Is a TyCon a promoted data constructor or just a normal type constructor?
data PromotionFlag
= NotPromoted
| IsPromoted
deriving ( Eq, Data )
isPromoted :: PromotionFlag -> Bool
isPromoted IsPromoted = True
isPromoted NotPromoted = False
{-
************************************************************************
* *
\subsection{Bang annotations}
* *
************************************************************************
-}
-- | Located Bang Type
type LBangType pass = XRec pass (BangType pass)
-- | Bang Type
--
-- In the parser, strictness and packedness annotations bind more tightly
-- than docstrings. This means that when consuming a 'BangType' (and looking
-- for 'HsBangTy') we must be ready to peer behind a potential layer of
-- 'HsDocTy'. See #15206 for motivation and 'getBangType' for an example.
type BangType pass = HsType pass -- Bangs are in the HsType data type
{-
************************************************************************
* *
\subsection{Data types}
* *
************************************************************************
This is the syntax for types as seen in type signatures.
Note [HsBSig binder lists]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a binder (or pattern) decorated with a type or kind,
\ (x :: a -> a). blah
forall (a :: k -> *) (b :: k). blah
Then we use a LHsBndrSig on the binder, so that the
renamer can decorate it with the variables bound
by the pattern ('a' in the first example, 'k' in the second),
assuming that neither of them is in scope already
See also Note [Kind and type-variable binders] in GHC.Rename.HsType
Note [HsType binders]
~~~~~~~~~~~~~~~~~~~~~
The system for recording type and kind-variable binders in HsTypes
is a bit complicated. Here's how it works.
* In a HsType,
HsForAllTy represents an /explicit, user-written/ 'forall' that
is nested within another HsType
e.g. forall a b. {...} or
forall a b -> {...}
Note that top-level 'forall's are represented with a
different AST form. See the description of HsOuterTyVarBndrs
below.
HsQualTy represents an /explicit, user-written/ context
e.g. (Eq a, Show a) => ...
The context can be empty if that's what the user wrote
These constructors represent what the user wrote, no more
and no less.
* The ForAllTelescope field of HsForAllTy represents whether a forall is
invisible (e.g., forall a b. {...}, with a dot) or visible
(e.g., forall a b -> {...}, with an arrow).
* HsTyVarBndr describes a quantified type variable written by the
user. For example
f :: forall a (b :: *). blah
here 'a' and '(b::*)' are each a HsTyVarBndr. A HsForAllTy has
a list of LHsTyVarBndrs.
* HsOuterTyVarBndrs is used to represent the outermost quantified type
variables in a type that obeys the forall-or-nothing rule. An
HsOuterTyVarBndrs can be one of the following:
HsOuterImplicit (implicit quantification, added by renamer)
f :: a -> a -- Desugars to f :: forall {a}. a -> a
HsOuterExplicit (explicit user quantification):
f :: forall a. a -> a
See Note [forall-or-nothing rule].
* An HsSigType is an LHsType with an accompanying HsOuterTyVarBndrs that
represents the presence (or absence) of its outermost 'forall'.
See Note [Representing type signatures].
* HsWildCardBndrs is a wrapper that binds the wildcard variables
of the wrapped thing. It is filled in by the renamer
f :: _a -> _
The enclosing HsWildCardBndrs binds the wildcards _a and _.
* HsSigPatType describes types that appear in pattern signatures and
the signatures of term-level binders in RULES. Like
HsWildCardBndrs/HsOuterTyVarBndrs, they track the names of wildcard
variables and implicitly bound type variables. Unlike
HsOuterTyVarBndrs, however, HsSigPatTypes do not obey the
forall-or-nothing rule. See Note [Pattern signature binders and scoping].
* The explicit presence of these wrappers specifies, in the HsSyn,
exactly where implicit quantification is allowed, and where
wildcards are allowed.
* LHsQTyVars is used in data/class declarations, where the user gives
explicit *type* variable bindings, but we need to implicitly bind
*kind* variables. For example
class C (a :: k -> *) where ...
The 'k' is implicitly bound in the hsq_tvs field of LHsQTyVars
Note [The wildcard story for types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Types can have wildcards in them, to support partial type signatures,
like f :: Int -> (_ , _a) -> _a
A wildcard in a type can be
* An anonymous wildcard,
written '_'
In HsType this is represented by HsWildCardTy.
The renamer leaves it untouched, and it is later given a fresh
meta tyvar in the typechecker.
* A named wildcard,
written '_a', '_foo', etc
In HsType this is represented by (HsTyVar "_a")
i.e. a perfectly ordinary type variable that happens
to start with an underscore
Note carefully:
* When NamedWildCards is off, type variables that start with an
underscore really /are/ ordinary type variables. And indeed, even
when NamedWildCards is on you can bind _a explicitly as an ordinary
type variable:
data T _a _b = MkT _b _a
Or even:
f :: forall _a. _a -> _b
Here _a is an ordinary forall'd binder, but (With NamedWildCards)
_b is a named wildcard. (See the comments in #10982)
* Named wildcards are bound by the HsWildCardBndrs (for types that obey the
forall-or-nothing rule) and HsPatSigType (for type signatures in patterns
and term-level binders in RULES), which wrap types that are allowed to have
wildcards. Unnamed wildcards, however are left unchanged until typechecking,
where we give them fresh wild tyvars and determine whether or not to emit
hole constraints on each wildcard (we don't if it's a visible type/kind
argument or a type family pattern). See related notes
Note [Wildcards in visible kind application] and
Note [Wildcards in visible type application] in GHC.Tc.Gen.HsType.
* After type checking is done, we report what types the wildcards
got unified with.
Note [Ordering of implicit variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since the advent of -XTypeApplications, GHC makes promises about the ordering
of implicit variable quantification. Specifically, we offer that implicitly
quantified variables (such as those in const :: a -> b -> a, without a `forall`)
will occur in left-to-right order of first occurrence. Here are a few examples:
const :: a -> b -> a -- forall a b. ...
f :: Eq a => b -> a -> a -- forall a b. ... contexts are included
type a <-< b = b -> a
g :: a <-< b -- forall a b. ... type synonyms matter
class Functor f where
fmap :: (a -> b) -> f a -> f b -- forall f a b. ...
-- The f is quantified by the class, so only a and b are considered in fmap
This simple story is complicated by the possibility of dependency: all variables
must come after any variables mentioned in their kinds.
typeRep :: Typeable a => TypeRep (a :: k) -- forall k a. ...
The k comes first because a depends on k, even though the k appears later than
the a in the code. Thus, GHC does a *stable topological sort* on the variables.
By "stable", we mean that any two variables who do not depend on each other
preserve their existing left-to-right ordering.
Implicitly bound variables are collected by the extract- family of functions
(extractHsTysRdrTyVars, extractHsTyVarBndrsKVs, etc.) in GHC.Rename.HsType.
These functions thus promise to keep left-to-right ordering.
Look for pointers to this note to see the places where the action happens.
Note that we also maintain this ordering in kind signatures. Even though
there's no visible kind application (yet), having implicit variables be
quantified in left-to-right order in kind signatures is nice since:
* It's consistent with the treatment for type signatures.
* It can affect how types are displayed with -fprint-explicit-kinds (see
#15568 for an example), which is a situation where knowing the order in
which implicit variables are quantified can be useful.
* In the event that visible kind application is implemented, the order in
which we would expect implicit variables to be ordered in kinds will have
already been established.
-}
-- | Located Haskell Context
type LHsContext pass = XRec pass (HsContext pass)
-- ^ 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnUnit'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Haskell Context
type HsContext pass = [LHsType pass]
-- | Located Haskell Type
type LHsType pass = XRec pass (HsType pass)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma' when
-- in a list
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Haskell Kind
type HsKind pass = HsType pass
-- | Located Haskell Kind
type LHsKind pass = XRec pass (HsKind pass)
-- ^ 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDcolon'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
--------------------------------------------------
-- LHsQTyVars
-- The explicitly-quantified binders in a data/type declaration
-- | The type variable binders in an 'HsForAllTy'.
-- See also @Note [Variable Specificity and Forall Visibility]@ in
-- "GHC.Tc.Gen.HsType".
data HsForAllTelescope pass
= HsForAllVis -- ^ A visible @forall@ (e.g., @forall a -> {...}@).
-- These do not have any notion of specificity, so we use
-- '()' as a placeholder value.
{ hsf_xvis :: XHsForAllVis pass
, hsf_vis_bndrs :: [LHsTyVarBndr () pass]
}
| HsForAllInvis -- ^ An invisible @forall@ (e.g., @forall a {b} c. {...}@),
-- where each binder has a 'Specificity'.
{ hsf_xinvis :: XHsForAllInvis pass
, hsf_invis_bndrs :: [LHsTyVarBndr Specificity pass]
}
| XHsForAllTelescope !(XXHsForAllTelescope pass)
-- | Located Haskell Type Variable Binder
type LHsTyVarBndr flag pass = XRec pass (HsTyVarBndr flag pass)
-- See Note [HsType binders]
-- | Located Haskell Quantified Type Variables
data LHsQTyVars pass -- See Note [HsType binders]
= HsQTvs { hsq_ext :: XHsQTvs pass
, hsq_explicit :: [LHsTyVarBndr () pass]
-- Explicit variables, written by the user
}
| XLHsQTyVars !(XXLHsQTyVars pass)
hsQTvExplicit :: LHsQTyVars pass -> [LHsTyVarBndr () pass]
hsQTvExplicit = hsq_explicit
------------------------------------------------
-- HsOuterTyVarBndrs
-- Used to quantify the outermost type variable binders of a type that obeys
-- the forall-or-nothing rule. These are used to represent the outermost
-- quantification in:
-- * Type signatures (LHsSigType/LHsSigWcType)
-- * Patterns in a type/data family instance (HsTyPats)
--
-- We support two forms:
-- HsOuterImplicit (implicit quantification, added by renamer)
-- f :: a -> a -- Desugars to f :: forall {a}. a -> a
-- type instance F (a,b) = a->b
-- HsOuterExplicit (explicit user quantification):
-- f :: forall a. a -> a
-- type instance forall a b. F (a,b) = a->b
--
-- In constrast, when the user writes /visible/ quanitification
-- T :: forall k -> k -> Type
-- we use use HsOuterImplicit, wrapped around a HsForAllTy
-- for the visible quantification
--
-- See Note [forall-or-nothing rule]
-- | The outermost type variables in a type that obeys the @forall@-or-nothing
-- rule. See @Note [forall-or-nothing rule]@.
data HsOuterTyVarBndrs flag pass
= HsOuterImplicit -- ^ Implicit forall, e.g.,
-- @f :: a -> b -> b@
{ hso_ximplicit :: XHsOuterImplicit pass
}
| HsOuterExplicit -- ^ Explicit forall, e.g.,
-- @f :: forall a b. a -> b -> b@
{ hso_xexplicit :: XHsOuterExplicit pass flag
, hso_bndrs :: [LHsTyVarBndr flag (NoGhcTc pass)]
}
| XHsOuterTyVarBndrs !(XXHsOuterTyVarBndrs pass)
-- | Used for signatures, e.g.,
--
-- @
-- f :: forall a {b}. blah
-- @
--
-- We use 'Specificity' for the 'HsOuterTyVarBndrs' @flag@ to allow
-- distinguishing between specified and inferred type variables.
type HsOuterSigTyVarBndrs = HsOuterTyVarBndrs Specificity
-- | Used for type-family instance equations, e.g.,
--
-- @
-- type instance forall a. F [a] = Tree a
-- @
--
-- The notion of specificity is irrelevant in type family equations, so we use
-- @()@ for the 'HsOuterTyVarBndrs' @flag@.
type HsOuterFamEqnTyVarBndrs = HsOuterTyVarBndrs ()
-- | Haskell Wildcard Binders
data HsWildCardBndrs pass thing
-- See Note [HsType binders]
-- See Note [The wildcard story for types]
= HsWC { hswc_ext :: XHsWC pass thing
-- after the renamer
-- Wild cards, only named
-- See Note [Wildcards in visible kind application]
, hswc_body :: thing
-- Main payload (type or list of types)
-- If there is an extra-constraints wildcard,
-- it's still there in the hsc_body.
}
| XHsWildCardBndrs !(XXHsWildCardBndrs pass thing)
-- | Types that can appear in pattern signatures, as well as the signatures for
-- term-level binders in RULES.
-- See @Note [Pattern signature binders and scoping]@.
--
-- This is very similar to 'HsSigWcType', but with
-- slightly different semantics: see @Note [HsType binders]@.
-- See also @Note [The wildcard story for types]@.
data HsPatSigType pass
= HsPS { hsps_ext :: XHsPS pass -- ^ After renamer: 'HsPSRn'
, hsps_body :: LHsType pass -- ^ Main payload (the type itself)
}
| XHsPatSigType !(XXHsPatSigType pass)
-- | Located Haskell Signature Type
type LHsSigType pass = XRec pass (HsSigType pass) -- Implicit only
-- | Located Haskell Wildcard Type
type LHsWcType pass = HsWildCardBndrs pass (LHsType pass) -- Wildcard only
-- | Located Haskell Signature Wildcard Type
type LHsSigWcType pass = HsWildCardBndrs pass (LHsSigType pass) -- Both
-- | A type signature that obeys the @forall@-or-nothing rule. In other
-- words, an 'LHsType' that uses an 'HsOuterSigTyVarBndrs' to represent its
-- outermost type variable quantification.
-- See @Note [Representing type signatures]@.
data HsSigType pass
= HsSig { sig_ext :: XHsSig pass
, sig_bndrs :: HsOuterSigTyVarBndrs pass
, sig_body :: LHsType pass
}
| XHsSigType !(XXHsSigType pass)
hsPatSigType :: HsPatSigType pass -> LHsType pass
hsPatSigType = hsps_body
{-
Note [forall-or-nothing rule]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Free variables in signatures are usually bound in an implicit 'forall' at the
beginning of user-written signatures. However, if the signature has an
explicit, invisible forall at the beginning, this is disabled. This is referred
to as the forall-or-nothing rule.
The idea is nested foralls express something which is only expressible
explicitly, while a top level forall could (usually) be replaced with an
implicit binding. Top-level foralls alone ("forall.") are therefore an
indication that the user is trying to be fastidious, so we don't implicitly
bind any variables.
Note that this rule only applies to outermost /in/visible 'forall's, and not
outermost visible 'forall's. See #18660 for more on this point.
Here are some concrete examples to demonstrate the forall-or-nothing rule in
action:
type F1 :: a -> b -> b -- Legal; a,b are implicitly quantified.
-- Equivalently: forall a b. a -> b -> b
type F2 :: forall a b. a -> b -> b -- Legal; explicitly quantified
type F3 :: forall a. a -> b -> b -- Illegal; the forall-or-nothing rule says that
-- if you quantify a, you must also quantify b
type F4 :: forall a -> b -> b -- Legal; the top quantifier (forall a) is a /visible/
-- quantifier, so the "nothing" part of the forall-or-nothing
-- rule applies, and b is therefore implicitly quantified.
-- Equivalently: forall b. forall a -> b -> b
type F5 :: forall b. forall a -> b -> c -- Illegal; the forall-or-nothing rule says that
-- if you quantify b, you must also quantify c
type F6 :: forall a -> forall b. b -> c -- Legal: just like F4.
For a complete list of all places where the forall-or-nothing rule applies, see
"The `forall`-or-nothing rule" section of the GHC User's Guide.
Any type that obeys the forall-or-nothing rule is represented in the AST with
an HsOuterTyVarBndrs:
* If the type has an outermost, invisible 'forall', it uses HsOuterExplicit,
which contains a list of the explicitly quantified type variable binders in
`hso_bndrs`. After typechecking, HsOuterExplicit also stores a list of the
explicitly quantified `InvisTVBinder`s in
`hso_xexplicit :: XHsOuterExplicit GhcTc`.
* Otherwise, it uses HsOuterImplicit. HsOuterImplicit is used for different
things depending on the phase:
* After parsing, it does not store anything in particular.
* After renaming, it stores the implicitly bound type variable `Name`s in
`hso_ximplicit :: XHsOuterImplicit GhcRn`.
* After typechecking, it stores the implicitly bound `TyVar`s in
`hso_ximplicit :: XHsOuterImplicit GhcTc`.
NB: this implicit quantification is purely lexical: we bind any
type or kind variables that are not in scope. The type checker
may subsequently quantify over further kind variables.
See Note [Binding scoped type variables] in GHC.Tc.Gen.Sig.
HsOuterTyVarBndrs GhcTc is used in the typechecker as an intermediate data type
for storing the outermost TyVars/InvisTVBinders in a type.
See GHC.Tc.Gen.HsType.bindOuterTKBndrsX for an example of this.
Note [Representing type signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
HsSigType is used to represent an explicit user type signature. These are
used in a variety of places. Some examples include:
* Type signatures (e.g., f :: a -> a)
* Standalone kind signatures (e.g., type G :: a -> a)
* GADT constructor types (e.g., data T where MkT :: a -> T)
A HsSigType is the combination of an HsOuterSigTyVarBndrs and an LHsType:
* The HsOuterSigTyVarBndrs binds the /explicitly/ quantified type variables
when the type signature has an outermost, user-written 'forall' (i.e,
the HsOuterExplicit constructor is used). If there is no outermost 'forall',
then it binds the /implicitly/ quantified type variables instead (i.e.,
the HsOuterImplicit constructor is used).
* The LHsType represents the rest of the type.
E.g. For a signature like
f :: forall k (a::k). blah
we get
HsSig { sig_bndrs = HsOuterExplicit { hso_bndrs = [k, (a :: k)] }
, sig_body = blah }
Note [Pattern signature binders and scoping]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the pattern signatures like those on `t` and `g` in:
f = let h = \(t :: (b, b) ->
\(g :: forall a. a -> b) ->
...(t :: (Int,Int))...
in woggle
* The `b` in t's pattern signature is implicitly bound and scopes over
the signature and the body of the lambda. It stands for a type (any type);
indeed we subsequently discover that b=Int.
(See Note [TyVarTv] in GHC.Tc.Utils.TcMType for more on this point.)
* The `b` in g's pattern signature is an /occurrence/ of the `b` bound by
t's pattern signature.
* The `a` in `forall a` scopes only over the type `a -> b`, not over the body
of the lambda.
* There is no forall-or-nothing rule for pattern signatures, which is why the
type `forall a. a -> b` is permitted in `g`'s pattern signature, even though
`b` is not explicitly bound. See Note [forall-or-nothing rule].
Similar scoping rules apply to term variable binders in RULES, like in the
following example:
{-# RULES "h" forall (t :: (b, b)) (g :: forall a. a -> b). h t g = ... #-}
Just like in pattern signatures, the `b` in t's signature is implicitly bound
and scopes over the remainder of the RULE. As a result, the `b` in g's
signature is an occurrence. Moreover, the `a` in `forall a` scopes only over
the type `a -> b`, and the forall-or-nothing rule does not apply.
While quite similar, RULE term binder signatures behave slightly differently
from pattern signatures in two ways:
1. Unlike in pattern signatures, where type variables can stand for any type,
type variables in RULE term binder signatures are skolems.
See Note [Typechecking pattern signature binders] in GHC.Tc.Gen.HsType for
more on this point.
In this sense, type variables in pattern signatures are quite similar to
named wildcards, as both can refer to arbitrary types. The main difference
lies in error reporting: if a named wildcard `_a` in a pattern signature
stands for Int, then by default GHC will emit a warning stating as much.
Changing `_a` to `a`, on the other hand, will cause it not to be reported.
2. In the `h` RULE above, only term variables are explicitly bound, so any free
type variables in the term variables' signatures are implicitly bound.
This is just like how the free type variables in pattern signatures are
implicitly bound. If a RULE explicitly binds both term and type variables,
however, then free type variables in term signatures are /not/ implicitly
bound. For example, this RULE would be ill scoped:
{-# RULES "h2" forall b. forall (t :: (b, c)) (g :: forall a. a -> b).
h2 t g = ... #-}
This is because `b` and `c` occur free in the signature for `t`, but only
`b` was explicitly bound, leaving `c` out of scope. If the RULE had started
with `forall b c.`, then it would have been accepted.
The types in pattern signatures and RULE term binder signatures are represented
in the AST by HsSigPatType. From the renamer onward, the hsps_ext field (of
type HsPSRn) tracks the names of named wildcards and implicitly bound type
variables so that they can be brought into scope during renaming and
typechecking.
Note [Lexically scoped type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ScopedTypeVariables extension does two things:
* It allows the use of type signatures in patterns
(e.g., `f (x :: a -> a) = ...`). See
Note [Pattern signature binders and scoping] for more on this point.
* It brings lexically scoped type variables into scope for certain type
signatures with outermost invisible 'forall's.
This Note concerns the latter bullet point. Per the
"Lexically scoped type variables" section of the GHC User's Guide, the
following forms of type signatures can have lexically scoped type variables:
* In declarations with type signatures, e.g.,
f :: forall a. a -> a
f x = e @a
Here, the 'forall a' brings 'a' into scope over the body of 'f'.
Note that ScopedTypeVariables does /not/ interact with standalone kind
signatures, only type signatures.
* In explicit type annotations in expressions, e.g.,
id @a :: forall a. a -> a
* In instance declarations, e.g.,
instance forall a. C [a] where
m = e @a
Note that unlike the examples above, the use of an outermost 'forall' isn't
required to bring 'a' into scope. That is, the following would also work:
instance forall a. C [a] where
m = e @a
Note that all of the types above obey the forall-or-nothing rule. As a result,
the places in the AST that can have lexically scoped type variables are a
subset of the places that use HsOuterTyVarBndrs
(See Note [forall-or-nothing rule].)
Some other observations about lexically scoped type variables:
* Only type variables bound by an /invisible/ forall can be lexically scoped.
See Note [hsScopedTvs and visible foralls].
* The lexically scoped type variables may be a strict subset of the type
variables brought into scope by a type signature.
See Note [Binding scoped type variables] in GHC.Tc.Gen.Sig.
-}
mapHsOuterImplicit :: (XHsOuterImplicit pass -> XHsOuterImplicit pass)
-> HsOuterTyVarBndrs flag pass
-> HsOuterTyVarBndrs flag pass
mapHsOuterImplicit f (HsOuterImplicit{hso_ximplicit = imp}) =
HsOuterImplicit{hso_ximplicit = f imp}
mapHsOuterImplicit _ hso@(HsOuterExplicit{}) = hso
mapHsOuterImplicit _ hso@(XHsOuterTyVarBndrs{}) = hso
--------------------------------------------------
-- | These names are used early on to store the names of implicit
-- parameters. They completely disappear after type-checking.
newtype HsIPName = HsIPName FastString
deriving( Eq, Data )
hsIPNameFS :: HsIPName -> FastString
hsIPNameFS (HsIPName n) = n
--------------------------------------------------
-- | Haskell Type Variable Binder
-- The flag annotates the binder. It is 'Specificity' in places where
-- explicit specificity is allowed (e.g. x :: forall {a} b. ...) or
-- '()' in other places.
data HsTyVarBndr flag pass
= UserTyVar -- no explicit kinding
(XUserTyVar pass)
flag
(LIdP pass)
-- See Note [Located RdrNames] in GHC.Hs.Expr
| KindedTyVar
(XKindedTyVar pass)
flag
(LIdP pass)
(LHsKind pass) -- The user-supplied kind signature
-- ^
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnDcolon', 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XTyVarBndr
!(XXTyVarBndr pass)
-- | Does this 'HsTyVarBndr' come with an explicit kind annotation?
isHsKindedTyVar :: HsTyVarBndr flag pass -> Bool
isHsKindedTyVar (UserTyVar {}) = False
isHsKindedTyVar (KindedTyVar {}) = True
isHsKindedTyVar (XTyVarBndr {}) = False
-- | Haskell Type
data HsType pass
= HsForAllTy -- See Note [HsType binders]
{ hst_xforall :: XForAllTy pass
, hst_tele :: HsForAllTelescope pass
-- Explicit, user-supplied 'forall a {b} c'
, hst_body :: LHsType pass -- body type
}
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnForall',
-- 'GHC.Parser.Annotation.AnnDot','GHC.Parser.Annotation.AnnDarrow'
-- For details on above see Note [exact print annotations] in "GHC.Parser.Annotation"
| HsQualTy -- See Note [HsType binders]
{ hst_xqual :: XQualTy pass
, hst_ctxt :: LHsContext pass -- Context C => blah
, hst_body :: LHsType pass }
| HsTyVar (XTyVar pass)
PromotionFlag -- Whether explicitly promoted,
-- for the pretty printer
(LIdP pass)
-- Type variable, type constructor, or data constructor
-- see Note [Promotions (HsTyVar)]
-- See Note [Located RdrNames] in GHC.Hs.Expr
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : None
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsAppTy (XAppTy pass)
(LHsType pass)
(LHsType pass)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : None
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsAppKindTy (XAppKindTy pass) -- type level type app
(LHsType pass)
(LHsKind pass)
| HsFunTy (XFunTy pass)
(HsArrow pass)
(LHsType pass) -- function type
(LHsType pass)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnRarrow',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsListTy (XListTy pass)
(LHsType pass) -- Element type
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@,
-- 'GHC.Parser.Annotation.AnnClose' @']'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsTupleTy (XTupleTy pass)
HsTupleSort
[LHsType pass] -- Element types (length gives arity)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'(' or '(#'@,
-- 'GHC.Parser.Annotation.AnnClose' @')' or '#)'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsSumTy (XSumTy pass)
[LHsType pass] -- Element types (length gives arity)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'(#'@,
-- 'GHC.Parser.Annotation.AnnClose' '#)'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsOpTy (XOpTy pass)
PromotionFlag -- Whether explicitly promoted,
-- for the pretty printer
(LHsType pass) (LIdP pass) (LHsType pass)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : None
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsParTy (XParTy pass)
(LHsType pass) -- See Note [Parens in HsSyn] in GHC.Hs.Expr
-- Parenthesis preserved for the precedence re-arrangement in
-- GHC.Rename.HsType
-- It's important that a * (b + c) doesn't get rearranged to (a*b) + c!
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@,
-- 'GHC.Parser.Annotation.AnnClose' @')'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsIParamTy (XIParamTy pass)
(XRec pass HsIPName) -- (?x :: ty)
(LHsType pass) -- Implicit parameters as they occur in
-- contexts
-- ^
-- > (?x :: ty)
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDcolon'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsStarTy (XStarTy pass)
Bool -- Is this the Unicode variant?
-- Note [HsStarTy]
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : None
| HsKindSig (XKindSig pass)
(LHsType pass) -- (ty :: kind)
(LHsKind pass) -- A type with a kind signature
-- ^
-- > (ty :: kind)
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@,
-- 'GHC.Parser.Annotation.AnnDcolon','GHC.Parser.Annotation.AnnClose' @')'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsSpliceTy (XSpliceTy pass)
(HsUntypedSplice pass) -- Includes quasi-quotes
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'$('@,
-- 'GHC.Parser.Annotation.AnnClose' @')'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsDocTy (XDocTy pass)
(LHsType pass) (LHsDoc pass) -- A documented type
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : None
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsBangTy (XBangTy pass)
HsSrcBang (LHsType pass) -- Bang-style type annotations
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' :
-- 'GHC.Parser.Annotation.AnnOpen' @'{-\# UNPACK' or '{-\# NOUNPACK'@,
-- 'GHC.Parser.Annotation.AnnClose' @'#-}'@
-- 'GHC.Parser.Annotation.AnnBang' @\'!\'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsRecTy (XRecTy pass)
[LConDeclField pass] -- Only in data type declarations
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsExplicitListTy -- A promoted explicit list
(XExplicitListTy pass)
PromotionFlag -- whether explicitly promoted, for pretty printer
[LHsType pass]
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @"'["@,
-- 'GHC.Parser.Annotation.AnnClose' @']'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsExplicitTupleTy -- A promoted explicit tuple
(XExplicitTupleTy pass)
[LHsType pass]
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @"'("@,
-- 'GHC.Parser.Annotation.AnnClose' @')'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsTyLit (XTyLit pass) (HsTyLit pass) -- A promoted numeric literal.
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : None
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsWildCardTy (XWildCardTy pass) -- A type wildcard
-- See Note [The wildcard story for types]
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : None
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- Extension point; see Note [Trees That Grow] in Language.Haskell.Syntax.Extension
| XHsType
!(XXType pass)
-- | Haskell Type Literal
data HsTyLit pass
= HsNumTy (XNumTy pass) Integer
| HsStrTy (XStrTy pass) FastString
| HsCharTy (XCharTy pass) Char
| XTyLit !(XXTyLit pass)
-- | Denotes the type of arrows in the surface language
data HsArrow pass
= HsUnrestrictedArrow !(LHsUniToken "->" "→" pass)
-- ^ a -> b or a → b
| HsLinearArrow !(HsLinearArrowTokens pass)
-- ^ a %1 -> b or a %1 → b, or a ⊸ b
| HsExplicitMult !(LHsToken "%" pass) !(LHsType pass) !(LHsUniToken "->" "→" pass)
-- ^ a %m -> b or a %m → b (very much including `a %Many -> b`!
-- This is how the programmer wrote it). It is stored as an
-- `HsType` so as to preserve the syntax as written in the
-- program.
data HsLinearArrowTokens pass
= HsPct1 !(LHsToken "%1" pass) !(LHsUniToken "->" "→" pass)
| HsLolly !(LHsToken "⊸" pass)
-- | This is used in the syntax. In constructor declaration. It must keep the
-- arrow representation.
data HsScaled pass a = HsScaled (HsArrow pass) a
hsMult :: HsScaled pass a -> HsArrow pass
hsMult (HsScaled m _) = m
hsScaledThing :: HsScaled pass a -> a
hsScaledThing (HsScaled _ t) = t
{-
Note [Unit tuples]
~~~~~~~~~~~~~~~~~~
Consider the type
type instance F Int = ()
We want to parse that "()"
as HsTupleTy HsBoxedOrConstraintTuple [],
NOT as HsTyVar unitTyCon
Why? Because F might have kind (* -> Constraint), so we when parsing we
don't know if that tuple is going to be a constraint tuple or an ordinary
unit tuple. The HsTupleSort flag is specifically designed to deal with
that, but it has to work for unit tuples too.
Note [Promotions (HsTyVar)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
HsTyVar: A name in a type or kind.
Here are the allowed namespaces for the name.
In a type:
Var: not allowed
Data: promoted data constructor
Tv: type variable
TcCls before renamer: type constructor, class constructor, or promoted data constructor
TcCls after renamer: type constructor or class constructor
In a kind:
Var, Data: not allowed
Tv: kind variable
TcCls: kind constructor or promoted type constructor
The 'Promoted' field in an HsTyVar captures whether the type was promoted in
the source code by prefixing an apostrophe.
Note [HsStarTy]
~~~~~~~~~~~~~~~
When the StarIsType extension is enabled, we want to treat '*' and its Unicode
variant identically to 'Data.Kind.Type'. Unfortunately, doing so in the parser
would mean that when we pretty-print it back, we don't know whether the user
wrote '*' or 'Type', and lose the parse/ppr roundtrip property.
As a workaround, we parse '*' as HsStarTy (if it stands for 'Data.Kind.Type')
and then desugar it to 'Data.Kind.Type' in the typechecker (see tc_hs_type).
When '*' is a regular type operator (StarIsType is disabled), HsStarTy is not
involved.
Note [Promoted lists and tuples]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Notice the difference between
HsListTy HsExplicitListTy
HsTupleTy HsExplicitListTupleTy
E.g. f :: [Int] HsListTy
g3 :: T '[] All these use
g2 :: T '[True] HsExplicitListTy
g1 :: T '[True,False]
g1a :: T [True,False] (can omit ' where unambiguous)
kind of T :: [Bool] -> * This kind uses HsListTy!
E.g. h :: (Int,Bool) HsTupleTy; f is a pair
k :: S '(True,False) HsExplicitTypleTy; S is indexed by
a type-level pair of booleans
kind of S :: (Bool,Bool) -> * This kind uses HsExplicitTupleTy
Note [Distinguishing tuple kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Apart from promotion, tuples can have one of three different kinds:
x :: (Int, Bool) -- Regular boxed tuples
f :: Int# -> (# Int#, Int# #) -- Unboxed tuples
g :: (Eq a, Ord a) => a -- Constraint tuples
For convenience, internally we use a single constructor for all of these,
namely HsTupleTy, but keep track of the tuple kind (in the first argument to
HsTupleTy, a HsTupleSort). We can tell if a tuple is unboxed while parsing,
because of the #. However, with -XConstraintKinds we can only distinguish
between constraint and boxed tuples during type checking, in general. Hence the
two constructors of HsTupleSort:
HsUnboxedTuple -> Produced by the parser
HsBoxedOrConstraintTuple -> Could be a boxed or a constraint
tuple. Produced by the parser only,
disappears after type checking
After typechecking, we use TupleSort (which clearly distinguishes between
constraint tuples and boxed tuples) rather than HsTupleSort.
-}
-- | Haskell Tuple Sort
data HsTupleSort = HsUnboxedTuple
| HsBoxedOrConstraintTuple
deriving Data
-- | Located Constructor Declaration Field
type LConDeclField pass = XRec pass (ConDeclField pass)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma' when
-- in a list
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Constructor Declaration Field
data ConDeclField pass -- Record fields have Haddock docs on them
= ConDeclField { cd_fld_ext :: XConDeclField pass,
cd_fld_names :: [LFieldOcc pass],
-- ^ See Note [ConDeclField pass]
cd_fld_type :: LBangType pass,
cd_fld_doc :: Maybe (LHsDoc pass)}
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDcolon'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XConDeclField !(XXConDeclField pass)
-- | Describes the arguments to a data constructor. This is a common
-- representation for several constructor-related concepts, including:
--
-- * The arguments in a Haskell98-style constructor declaration
-- (see 'HsConDeclH98Details' in "GHC.Hs.Decls").
--
-- * The arguments in constructor patterns in @case@/function definitions
-- (see 'HsConPatDetails' in "GHC.Hs.Pat").
--
-- * The left-hand side arguments in a pattern synonym binding
-- (see 'HsPatSynDetails' in "GHC.Hs.Binds").
--
-- One notable exception is the arguments in a GADT constructor, which uses
-- a separate data type entirely (see 'HsConDeclGADTDetails' in
-- "GHC.Hs.Decls"). This is because GADT constructors cannot be declared with
-- infix syntax, unlike the concepts above (#18844).
data HsConDetails tyarg arg rec
= PrefixCon [tyarg] [arg] -- C @t1 @t2 p1 p2 p3
| RecCon rec -- C { x = p1, y = p2 }
| InfixCon arg arg -- p1 `C` p2
deriving Data
-- | An empty list that can be used to indicate that there are no
-- type arguments allowed in cases where HsConDetails is applied to Void.
noTypeArgs :: [Void]
noTypeArgs = []
{-
Note [ConDeclField pass]
~~~~~~~~~~~~~~~~~~~~~~~~~
A ConDeclField contains a list of field occurrences: these always
include the field label as the user wrote it. After the renamer, it
will additionally contain the identity of the selector function in the
second component.
Due to DuplicateRecordFields, the OccName of the selector function
may have been mangled, which is why we keep the original field label
separately. For example, when DuplicateRecordFields is enabled
data T = MkT { x :: Int }
gives
ConDeclField { cd_fld_names = [L _ (FieldOcc "x" $sel:x:MkT)], ... }.
-}
-----------------------
-- A valid type must have a for-all at the top of the type, or of the fn arg
-- types
---------------------
{- Note [Scoping of named wildcards]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f :: _a -> _a
f x = let g :: _a -> _a
g = ...
in ...
Currently, for better or worse, the "_a" variables are all the same. So
although there is no explicit forall, the "_a" scopes over the definition.
I don't know if this is a good idea, but there it is.
-}
{- Note [hsScopedTvs and visible foralls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-XScopedTypeVariables can be defined in terms of a desugaring to
-XTypeAbstractions (GHC Proposal #50):
fn :: forall a b c. tau(a,b,c) fn :: forall a b c. tau(a,b,c)
fn = defn(a,b,c) ==> fn @x @y @z = defn(x,y,z)
That is, for every type variable of the leading 'forall' in the type signature,
we add an invisible binder at term level.
This model does not extend to visible forall, as discussed here:
* https://gitlab.haskell.org/ghc/ghc/issues/16734#note_203412
* https://github.com/ghc-proposals/ghc-proposals/pull/238
The conclusion of these discussions can be summarized as follows:
> Assuming support for visible 'forall' in terms, consider this example:
>
> vfn :: forall x y -> tau(x,y)
> vfn = \a b -> ...
>
> The user has written their own binders 'a' and 'b' to stand for 'x' and
> 'y', and we definitely should not desugar this into:
>
> vfn :: forall x y -> tau(x,y)
> vfn x y = \a b -> ... -- bad!
This design choice is reflected in the design of HsOuterSigTyVarBndrs, which are
used in every place that ScopedTypeVariables takes effect:
data HsOuterTyVarBndrs flag pass
= HsOuterImplicit { ... }
| HsOuterExplicit { ..., hso_bndrs :: [LHsTyVarBndr flag pass] }
| ...
type HsOuterSigTyVarBndrs = HsOuterTyVarBndrs Specificity
The HsOuterExplicit constructor is only used in type signatures with outermost,
/invisible/ 'forall's. Any other type—including those with outermost,
/visible/ 'forall's—will use HsOuterImplicit. Therefore, when we determine
which type variables to bring into scope over the body of a function
(in hsScopedTvs), we /only/ bring the type variables bound by the hso_bndrs in
an HsOuterExplicit into scope. If we have an HsOuterImplicit instead, then we
do not bring any type variables into scope over the body of a function at all.
At the moment, GHC does not support visible 'forall' in terms. Nevertheless,
it is still possible to write erroneous programs that use visible 'forall's in
terms, such as this example:
x :: forall a -> a -> a
x = x
Previous versions of GHC would bring `a` into scope over the body of `x` in the
hopes that the typechecker would error out later
(see `GHC.Tc.Validity.vdqAllowed`). However, this can wreak havoc in the
renamer before GHC gets to that point (see #17687 for an example of this).
Bottom line: nip problems in the bud by refraining from bringing any type
variables in an HsOuterImplicit into scope over the body of a function, even
if they correspond to a visible 'forall'.
-}
{-
************************************************************************
* *
Decomposing HsTypes
* *
************************************************************************
-}
-- | Arguments in an expression/type after splitting
data HsArg tm ty
= HsValArg tm -- Argument is an ordinary expression (f arg)
| HsTypeArg SrcSpan ty -- Argument is a visible type application (f @ty)
-- SrcSpan is location of the `@`
| HsArgPar SrcSpan -- See Note [HsArgPar]
-- type level equivalent
type LHsTypeArg p = HsArg (LHsType p) (LHsKind p)
{-
Note [HsArgPar]
~~~~~~~~~~~~~~~
A HsArgPar indicates that everything to the left of this in the argument list is
enclosed in parentheses together with the function itself. It is necessary so
that we can recreate the parenthesis structure in the original source after
typechecking the arguments.
The SrcSpan is the span of the original HsPar
((f arg1) arg2 arg3) results in an input argument list of
[HsValArg arg1, HsArgPar span1, HsValArg arg2, HsValArg arg3, HsArgPar span2]
-}
{-
************************************************************************
* *
FieldOcc
* *
************************************************************************
-}
-- | Located Field Occurrence
type LFieldOcc pass = XRec pass (FieldOcc pass)
-- | Field Occurrence
--
-- Represents an *occurrence* of a field. This may or may not be a
-- binding occurrence (e.g. this type is used in 'ConDeclField' and
-- 'RecordPatSynField' which bind their fields, but also in
-- 'HsRecField' for record construction and patterns, which do not).
--
-- We store both the 'RdrName' the user originally wrote, and after
-- the renamer we use the extension field to store the selector
-- function.
data FieldOcc pass
= FieldOcc {
foExt :: XCFieldOcc pass
, foLabel :: XRec pass RdrName -- See Note [Located RdrNames] in Language.Haskell.Syntax.Expr
}
| XFieldOcc !(XXFieldOcc pass)
deriving instance (
Eq (XRec pass RdrName)
, Eq (XCFieldOcc pass)
, Eq (XXFieldOcc pass)
) => Eq (FieldOcc pass)
-- | Located Ambiguous Field Occurence
type LAmbiguousFieldOcc pass = XRec pass (AmbiguousFieldOcc pass)
-- | Ambiguous Field Occurrence
--
-- Represents an *occurrence* of a field that is potentially
-- ambiguous after the renamer, with the ambiguity resolved by the
-- typechecker. We always store the 'RdrName' that the user
-- originally wrote, and store the selector function after the renamer
-- (for unambiguous occurrences) or the typechecker (for ambiguous
-- occurrences).
--
-- See Note [HsRecField and HsRecUpdField] in "GHC.Hs.Pat".
-- See Note [Located RdrNames] in "GHC.Hs.Expr".
data AmbiguousFieldOcc pass
= Unambiguous (XUnambiguous pass) (XRec pass RdrName)
| Ambiguous (XAmbiguous pass) (XRec pass RdrName)
| XAmbiguousFieldOcc !(XXAmbiguousFieldOcc pass)
{-
************************************************************************
* *
\subsection{Pretty printing}
* *
************************************************************************
-}
|