1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
{-# LANGUAGE MonadComprehensions, MultiParamTypeClasses #-}
{- |
Module : Data.GraphViz.Algorithms
Description : Various algorithms on Graphviz graphs.
Copyright : (c) Matthew Sackman, Ivan Lazar Miljenovic
License : 3-Clause BSD-style
Maintainer : Ivan.Miljenovic@gmail.com
Defines various algorithms for use on 'DotRepr' graphs. These are
typically re-implementations of behaviour found in existing Graphviz
tools but without the I/O requirement.
Note that one way that these algorithms differ from those found in
Graphviz is that the order of clusters is /not/ maintained, which may
affect layout in some cases.
-}
module Data.GraphViz.Algorithms
( -- * Canonicalisation Options
-- $options
CanonicaliseOptions(..)
, defaultCanonOptions
, dotLikeOptions
-- * Canonicalisation
-- $canonicalisation
, canonicalise
, canonicaliseOptions
-- * Dealing with transitive edges
-- $transitive
, transitiveReduction
, transitiveReductionOptions
) where
import Data.GraphViz.Attributes.Complete (Attributes, defaultAttributeValue)
import Data.GraphViz.Attributes.Same
import Data.GraphViz.Internal.Util (bool)
import Data.GraphViz.Types
import Data.GraphViz.Types.Canonical
import Data.GraphViz.Types.Internal.Common
import Control.Arrow (first, second, (***))
import Control.Monad (unless)
import Control.Monad.Trans.State
import qualified Data.DList as DList
import qualified Data.Foldable as F
import Data.Function (on)
import Data.List (deleteBy, groupBy, partition,
sortBy, (\\))
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Maybe (fromMaybe, listToMaybe, mapMaybe)
import Data.Set (Set)
import qualified Data.Set as Set
-- -----------------------------------------------------------------------------
{- $options
For simplicity, many algorithms end up using the canonicalisation
functions to create the new 'DotGraph'. 'CanonicaliseOptions' allows
you to configure how the output is generated.
-}
data CanonicaliseOptions = COpts { -- | Place edges in the clusters
-- where their nodes are rather
-- than in the top-level graph.
edgesInClusters :: Bool
-- | Put common 'Attributes' as
-- top-level 'GlobalAttributes'.
, groupAttributes :: Bool
}
deriving (Eq, Ord, Show, Read)
defaultCanonOptions :: CanonicaliseOptions
defaultCanonOptions = COpts { edgesInClusters = True
, groupAttributes = True
}
-- | Options that are more like how @dot -Tcanon@ works.
dotLikeOptions :: CanonicaliseOptions
dotLikeOptions = COpts { edgesInClusters = True
, groupAttributes = False
}
-- -----------------------------------------------------------------------------
{- $canonicalisation
These functions implement similar functionality to @dot -Tcanon@
(i.e. creates a canonical form of any 'DotRepr' graph). without
requiring IO.
Note that due to implementation specifics the behaviour is not
identical; in particular:
* Any specified 'Attributes' that equal the defaults are stripped out
(unless required to override a previous attribute that doesn't apply
here).
* Grouping of attributes (when @'groupAttributes = True'@) is much
more conservative; only those node/edge attributes that are common to
/all/ nodes and edges within that cluster (and within sub-clusters)
are made global.
* Sub-graphs aren't kept, only clusters.
* 'ColorScheme' Attributes are removed (as all @Color@ values embed
any needed color scheme anyway) as the output order of attributes may
change (and this matters for the Haskell side of things).
In particular, note that this function will create a single explicit
definition for every node in the original graph and place it in the
appropriate position in the cluster hierarchy. All edges are found in
the deepest cluster that contains both nodes.
-}
-- | Canonicalise with some sensible defaults.
canonicalise :: (DotRepr dg n) => dg n -> DotGraph n
canonicalise = canonicaliseOptions defaultCanonOptions
-- | As with 'canonicalise', but allow custom 'CanonicaliseOptions'.
canonicaliseOptions :: (DotRepr dg n) => CanonicaliseOptions
-> dg n -> DotGraph n
canonicaliseOptions opts dg = cdg { strictGraph = graphIsStrict dg
, directedGraph = graphIsDirected dg
}
where
cdg = createCanonical opts (getID dg) gas cl nl es
(gas, cl) = graphStructureInformationClean dg
nl = nodeInformationClean True dg
es = edgeInformationClean True dg
type NodePath n = ([Maybe GraphID], DotNode n)
type NodePaths n = [NodePath n]
type EdgeClusters n = Map (Maybe GraphID) [DotEdge n]
type EdgeLocations n = (EdgeClusters n, [DotEdge n])
data CanonControl n = CC { cOpts :: !CanonicaliseOptions
, isGraph :: !Bool
, clusters :: !ClusterLookup
, clustEs :: !(EdgeLocations n)
, topID :: !(Maybe GraphID)
, topAttrs :: !Attributes
}
createCanonical :: (Ord n) => CanonicaliseOptions -> Maybe GraphID -> GlobalAttributes
-> ClusterLookup -> NodeLookup n -> [DotEdge n] -> DotGraph n
createCanonical opts gid gas cl nl es = promoteDSG $ makeGrouping cc ns
where
nUnlook (n,(p,as)) = (F.toList p, DotNode n as)
-- DotNodes paired and sorted by their paths
ns = sortBy (compLists `on` fst) . map nUnlook $ Map.toList nl
es' = if edgesInClusters opts
then edgeClusters nl es
else (Map.empty, es)
cc = CC { cOpts = opts
, isGraph = True
, clusters = cl
, clustEs = es'
, topID = gid
, topAttrs = attrs gas
}
thisLevel :: NodePaths n -> (NodePaths n, [DotNode n])
thisLevel = second (map snd) . span (not . null . fst)
makeGrouping :: CanonControl n -> NodePaths n -> DotSubGraph n
makeGrouping cc cns = DotSG { isCluster = True
, subGraphID = cID
, subGraphStmts = stmts
}
where
cID | isGraph cc = topID cc
| otherwise = head . fst . head $ cns
(nestedNs, ns) = thisLevel
. bool (map $ first tail) id (isGraph cc)
$ cns
es = bool (fromMaybe [] . Map.lookup cID . fst) snd (isGraph cc)
$ clustEs cc
gas | isGraph cc = topAttrs cc
| otherwise = attrs . snd $ clusters cc Map.! cID
subGs = map (makeGrouping $ cc { isGraph = False })
. groupBy ((==) `on` (listToMaybe . fst))
$ nestedNs
stmts = setGlobal (cOpts cc) gas
$ DotStmts { attrStmts = []
, subGraphs = subGs
, nodeStmts = ns
, edgeStmts = es
}
setGlobal :: CanonicaliseOptions
-> Attributes -- Specified cluster attributes
-> DotStatements n
-> DotStatements n
setGlobal opts as stmts = stmts { attrStmts = globs'
, subGraphs = sgs'
, nodeStmts = ns'
, edgeStmts = es'
}
where
sgs = subGraphs stmts
sStmts = map subGraphStmts sgs
ns = nodeStmts stmts
es = edgeStmts stmts
sGlobs = map (partitionGlobal . attrStmts) sStmts
(sgas,snas,seas) = unzip3 sGlobs
gas' = as -- Can't change graph attrs! Need these!
nas' = getCommonGlobs opts nodeStmts snas sStmts $ map nodeAttributes ns
eas' = getCommonGlobs opts edgeStmts seas sStmts $ map edgeAttributes es
globs' = nonEmptyGAs [ GraphAttrs gas'
, NodeAttrs nas'
, EdgeAttrs eas'
]
ns' = map (\dn -> dn { nodeAttributes = nodeAttributes dn \\ nas' }) ns
es' = map (\de -> de { edgeAttributes = edgeAttributes de \\ eas' }) es
sgas' = updateGraphGlobs gas' sgas
snas' = map (\\ nas') snas
seas' = map (\\ eas') seas
sGlobs' = zip3 sgas' snas' seas'
sStmts' = zipWith (\ sSt sGl -> sSt { attrStmts = nonEmptyGAs $ unPartitionGlobal sGl })
sStmts
sGlobs'
sgs' = zipWith (\ sg sSt -> sg { subGraphStmts = sSt }) sgs sStmts'
updateGraphGlobs :: Attributes -> [Attributes] -> [Attributes]
updateGraphGlobs gas = map go
where
gasS = Set.fromList gas
override = toSAttr $ nonSameDefaults gas
-- * Remove any identical values
-- * Override any different values
go = Set.toList
. (`Set.difference` gasS) -- Remove identical values
. unSameSet
. (`Set.union` override) -- Keeps existing values of constructors
. toSAttr
nonSameDefaults :: Attributes -> Attributes
nonSameDefaults = mapMaybe (\ a -> [ a' | a' <- defaultAttributeValue a, a' /= a] )
getCommonGlobs :: CanonicaliseOptions
-> (DotStatements n -> [a])
-> [Attributes] -- ^ From sub-graphs
-> [DotStatements n] -- ^ Statements from the sub-graphs for testing.
-> [Attributes] -- ^ From nodes/edges
-> Attributes
getCommonGlobs opts f sas stmts as
| not $ groupAttributes opts = []
| otherwise = case sas' ++ as of
[] -> []
[_] -> []
as' -> Set.toList . foldr1 Set.intersection
$ map Set.fromList as'
where
sas' = keepIfAny f sas stmts
-- Used to distinguish between having empty list of global attributes
-- for nodes or edges because there aren't any nodes/edges, or because
-- there aren't any common attributes
keepIfAny :: (DotStatements n -> [a]) -> [Attributes] -> [DotStatements n]
-> [Attributes]
keepIfAny f sas = map fst . filter snd . zip sas . map (hasAny f)
hasAny :: (DotStatements n -> [a]) -> DotStatements n -> Bool
hasAny f ds = not (null $ f ds) || any (hasAny f . subGraphStmts) (subGraphs ds)
promoteDSG :: DotSubGraph n -> DotGraph n
promoteDSG dsg = DotGraph { strictGraph = undefined
, directedGraph = undefined
, graphID = subGraphID dsg
, graphStatements = subGraphStmts dsg
}
-- Same as compare for lists, except shorter lists are GT
compLists :: (Ord a) => [a] -> [a] -> Ordering
compLists [] [] = EQ
compLists [] _ = GT
compLists _ [] = LT
compLists (x:xs) (y:ys) = case compare x y of
EQ -> compLists xs ys
oth -> oth
nonEmptyGAs :: [GlobalAttributes] -> [GlobalAttributes]
nonEmptyGAs = filter (not . null . attrs)
-- Assign each edge into the cluster it belongs in.
edgeClusters :: (Ord n) => NodeLookup n -> [DotEdge n]
-> EdgeLocations n
edgeClusters nl = (toM *** map snd) . partition (not . null . fst)
. map inClust
where
nl' = Map.map (F.toList . fst) nl
-- DotEdge n -> (Path, DotEdge n)
inClust de@(DotEdge n1 n2 _) = (flip (,) de)
. map fst . takeWhile (uncurry (==))
$ zip (nl' Map.! n1) (nl' Map.! n2)
toM = Map.map DList.toList
. Map.fromListWith (flip DList.append)
. map (last *** DList.singleton)
-- -----------------------------------------------------------------------------
{- $transitive
In large, cluttered graphs, it can often be difficult to see what
is happening due to the number of edges being drawn. As such, it is
often useful to remove transitive edges from the graph before
visualising it.
For example, consider the following Dot graph:
> digraph {
> a -> b;
> a -> c;
> b -> c;
> }
This graph has the transitive edge @a -> c@ (as we can reach @c@ from @a@ via @b@).
Graphviz comes with the @tred@ program to perform these transitive
reductions. 'transitiveReduction' and 'transitiveReductionOptions'
are pure Haskell re-implementations of @tred@ with the following differences:
* @tred@ prints a message to stderr if a cycle is detected; these
functions do not.
* @tred@ preserves the original structure of the graph; these
functions use the canonicalisation functions above to create the new
graph (rather than re-implement creation functions for each one).
When a graph contains cycles, an arbitrary edge from that cycle is
ignored whilst calculating the transitive reduction. Multiple edges
are also reduced (such that only the first edge between two nodes is
kept).
Note that transitive reduction only makes sense for directed graphs;
for undirected graphs these functions are identical to the
canonicalisation functions above.
The caveats for the canonicalisation functions also apply.
-}
transitiveReduction :: (DotRepr dg n) => dg n -> DotGraph n
transitiveReduction = transitiveReductionOptions defaultCanonOptions
transitiveReductionOptions :: (DotRepr dg n) => CanonicaliseOptions
-> dg n -> DotGraph n
transitiveReductionOptions opts dg = cdg { strictGraph = graphIsStrict dg
, directedGraph = graphIsDirected dg
}
where
cdg = createCanonical opts (getID dg) gas cl nl es'
(gas, cl) = graphStructureInformationClean dg
nl = nodeInformationClean True dg
es = edgeInformationClean True dg
es' | graphIsDirected dg = rmTransEdges es
| otherwise = es
rmTransEdges :: (Ord n) => [DotEdge n] -> [DotEdge n]
rmTransEdges [] = []
rmTransEdges es = concatMap (map snd . outgoing) $ Map.elems esM
where
tes = tagEdges es
esMS = do edgeGraph tes
ns <- getsMap Map.keys
mapM_ (traverse zeroTag) ns
esM = fst $ execState esMS (Map.empty, Set.empty)
type Tag = Int
type TagSet = Set Int
type TaggedEdge n = (Tag, DotEdge n)
-- A "nonsense" tag to use as an initial value
zeroTag :: Tag
zeroTag = 0
tagEdges :: [DotEdge n] -> [TaggedEdge n]
tagEdges = zip [(succ zeroTag)..]
data TaggedValues n = TV { marked :: Bool
, incoming :: [TaggedEdge n]
, outgoing :: [TaggedEdge n]
}
deriving (Eq, Ord, Show, Read)
defTV :: TaggedValues n
defTV = TV False [] []
type TagMap n = Map n (TaggedValues n)
type TagState n a = State (TagMap n, TagSet) a
getMap :: TagState n (TagMap n)
getMap = gets fst
getsMap :: (TagMap n -> a) -> TagState n a
getsMap f = gets (f . fst)
modifyMap :: (TagMap n -> TagMap n) -> TagState n ()
modifyMap f = modify (first f)
getSet :: TagState n TagSet
getSet = gets snd
modifySet :: (TagSet -> TagSet) -> TagState n ()
modifySet f = modify (second f)
-- Create the Map representing the graph from the edges.
edgeGraph :: (Ord n) => [TaggedEdge n] -> TagState n ()
edgeGraph = mapM_ addEdge . reverse
where
addEdge te = addVal f tvOut >> addVal t tvIn
where
e = snd te
f = fromNode e
t = toNode e
addVal n tv = modifyMap (Map.insertWith mergeTV n tv)
tvIn = defTV { incoming = [te] }
tvOut = defTV { outgoing = [te] }
mergeTV tvNew tv = tv { incoming = incoming tvNew ++ incoming tv
, outgoing = outgoing tvNew ++ outgoing tv
}
-- Perform a DFS to determine whether or not to keep each edge.
traverse :: (Ord n) => Tag -> n -> TagState n ()
traverse t n = do setMark True
checkIncoming
outEs <- getsMap (maybe [] outgoing . Map.lookup n)
mapM_ maybeRecurse outEs
setMark False
where
setMark mrk = modifyMap (Map.adjust (\tv -> tv { marked = mrk }) n)
isMarked m n' = maybe False marked $ n' `Map.lookup` m
checkIncoming = do m <- gets fst
let es = incoming $ m Map.! n
(keepEs, delEs) = partition (keepEdge m) es
modifyMap (Map.adjust (\tv -> tv {incoming = keepEs}) n)
modifySet (Set.union $ Set.fromList (map fst delEs))
mapM_ delOtherEdge delEs
where
keepEdge m (t',e) = t == t' || not (isMarked m $ fromNode e)
delOtherEdge te = modifyMap (Map.adjust delE . fromNode $ snd te)
where
delE tv = tv {outgoing = deleteBy ((==) `on` fst) te $ outgoing tv}
maybeRecurse (t',e) = do m <- getMap
delSet <- getSet
let n' = toNode e
unless (isMarked m n' || t' `Set.member` delSet)
$ traverse t' n'
|