1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
|
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses #-}
{- |
Module : Data.GraphViz.Types.Graph
Description : A graph-like representation of Dot graphs.
Copyright : (c) Ivan Lazar Miljenovic
License : 3-Clause BSD-style
Maintainer : Ivan.Miljenovic@gmail.com
It is sometimes useful to be able to manipulate a Dot graph /as/ an
actual graph. This representation lets you do so, using an
inductive approach based upon that from FGL (note that 'DotGraph'
is /not/ an instance of the FGL classes due to having the wrong
kind). Note, however, that the API is not as complete as proper
graph implementations.
For purposes of manipulation, all edges are found in the root graph
and not in a cluster; as such, having 'EdgeAttrs' in a cluster's
'GlobalAttributes' is redundant.
Printing is achieved via "Data.GraphViz.Types.Canonical" (using
'toCanonical') and parsing via "Data.GraphViz.Types.Generalised"
(so /any/ piece of Dot code can be parsed in).
This representation doesn't allow non-cluster sub-graphs. Also, all
clusters /must/ have a unique identifier. For those functions (with
the exception of 'DotRepr' methods) that take or return a \"@Maybe
GraphID@\", a value of \"@Nothing@\" refers to the root graph; \"@Just
clust@\" refers to the cluster with the identifier \"@clust@\".
You would not typically explicitly create these values, instead
converting existing Dot graphs (via 'fromDotRepr'). However, one
way of constructing the sample graph would be:
> setID (Str "G")
> . setStrictness False
> . setIsDirected True
> . setClusterAttributes (Int 0) [GraphAttrs [style filled, color LightGray, textLabel "process #1"], NodeAttrs [style filled, color White]]
> . setClusterAttributes (Int 1) [GraphAttrs [textLabel "process #2", color Blue], NodeAttrs [style filled]]
> $ composeList [ Cntxt "a0" (Just $ Int 0) [] [("a3",[]),("start",[])] [("a1",[])]
> , Cntxt "a1" (Just $ Int 0) [] [] [("a2",[]),("b3",[])]
> , Cntxt "a2" (Just $ Int 0) [] [] [("a3",[])]
> , Cntxt "a3" (Just $ Int 0) [] [("b2",[])] [("end",[])]
> , Cntxt "b0" (Just $ Int 1) [] [("start",[])] [("b1",[])]
> , Cntxt "b1" (Just $ Int 1) [] [] [("b2",[])]
> , Cntxt "b2" (Just $ Int 1) [] [] [("b3",[])]
> , Cntxt "b3" (Just $ Int 1) [] [] [("end",[])]
> , Cntxt "end" Nothing [shape MSquare] [] []
> , Cntxt "start" Nothing [shape MDiamond] [] []]
-}
module Data.GraphViz.Types.Graph
( DotGraph
, GraphID(..)
, Context(..)
-- * Conversions
, toCanonical
, unsafeFromCanonical
, fromDotRepr
-- * Graph information
, isEmpty
, hasClusters
, isEmptyGraph
, graphAttributes
, parentOf
, clusterAttributes
, foundInCluster
, attributesOf
, predecessorsOf
, successorsOf
, adjacentTo
, adjacent
-- * Graph construction
, mkGraph
, emptyGraph
, (&)
, composeList
, addNode
, DotNode(..)
, addDotNode
, addEdge
, DotEdge(..)
, addDotEdge
, addCluster
, setClusterParent
, setClusterAttributes
-- * Graph deconstruction
, decompose
, decomposeAny
, decomposeList
, deleteNode
, deleteAllEdges
, deleteEdge
, deleteDotEdge
, deleteCluster
, removeEmptyClusters
) where
import Data.GraphViz.Algorithms (CanonicaliseOptions (..),
canonicaliseOptions)
import Data.GraphViz.Algorithms.Clustering
import Data.GraphViz.Attributes.Complete (Attributes)
import Data.GraphViz.Attributes.Same
import Data.GraphViz.Internal.Util (groupSortBy,
groupSortCollectBy)
import Data.GraphViz.Types
import qualified Data.GraphViz.Types.Canonical as C
import qualified Data.GraphViz.Types.Generalised as G
import Data.GraphViz.Types.Internal.Common (partitionGlobal)
import qualified Data.GraphViz.Types.State as St
import Control.Applicative (liftA2, (<$>), (<*>))
import Control.Arrow ((***))
import qualified Data.Foldable as F
import Data.List (delete, foldl', unfoldr)
import Data.Map (Map)
import qualified Data.Map as M
import Data.Maybe (fromMaybe, mapMaybe)
import qualified Data.Sequence as Seq
import qualified Data.Set as S
import Text.ParserCombinators.ReadPrec (prec)
import Text.Read (Lexeme (Ident), lexP, parens,
readPrec)
-- -----------------------------------------------------------------------------
-- | A Dot graph that allows graph operations on it.
data DotGraph n = DG { strictGraph :: !Bool
, directedGraph :: !Bool
, graphAttrs :: !GlobAttrs
, graphID :: !(Maybe GraphID)
, clusters :: !(Map GraphID ClusterInfo)
, values :: !(NodeMap n)
}
deriving (Eq, Ord)
-- | It should be safe to substitute 'unsafeFromCanonical' for
-- 'fromCanonical' in the output of this.
instance (Ord n, Show n) => Show (DotGraph n) where
showsPrec d dg = showParen (d > 10) $
showString "fromCanonical " . shows (toCanonical dg)
-- | If the graph is the output from 'show', then it should be safe to
-- substitute 'unsafeFromCanonical' for 'fromCanonical'.
instance (Ord n, Read n) => Read (DotGraph n) where
readPrec = parens . prec 10
$ do Ident "fromCanonical" <- lexP
cdg <- readPrec
return $ fromCanonical cdg
data GlobAttrs = GA { graphAs :: !SAttrs
, nodeAs :: !SAttrs
, edgeAs :: !SAttrs
}
deriving (Eq, Ord, Show, Read)
data NodeInfo n = NI { _inCluster :: !(Maybe GraphID)
, _attributes :: !Attributes
, _predecessors :: !(EdgeMap n)
, _successors :: !(EdgeMap n)
}
deriving (Eq, Ord, Show, Read)
data ClusterInfo = CI { parentCluster :: !(Maybe GraphID)
, clusterAttrs :: !GlobAttrs
}
deriving (Eq, Ord, Show, Read)
type NodeMap n = Map n (NodeInfo n)
type EdgeMap n = Map n [Attributes]
-- | The decomposition of a node from a dot graph. Any loops should
-- be found in 'successors' rather than 'predecessors'. Note also
-- that these are created\/consumed as if for /directed/ graphs.
data Context n = Cntxt { node :: !n
-- | The cluster this node can be found in;
-- @Nothing@ indicates the node can be
-- found in the root graph.
, inCluster :: !(Maybe GraphID)
, attributes :: !Attributes
, predecessors :: ![(n, Attributes)]
, successors :: ![(n, Attributes)]
}
deriving (Eq, Ord, Show, Read)
adjacent :: Context n -> [DotEdge n]
adjacent c = mapU (`DotEdge` n) (predecessors c)
++ mapU (DotEdge n) (successors c)
where
n = node c
mapU = map . uncurry
emptyGraph :: DotGraph n
emptyGraph = DG { strictGraph = False
, directedGraph = True
, graphID = Nothing
, graphAttrs = emptyGA
, clusters = M.empty
, values = M.empty
}
emptyGA :: GlobAttrs
emptyGA = GA S.empty S.empty S.empty
-- -----------------------------------------------------------------------------
-- Construction
-- | Merge the 'Context' into the graph. Assumes that the specified
-- node is not in the graph but that all endpoints in the
-- 'successors' and 'predecessors' (with the exception of loops)
-- are. If the cluster is not present in the graph, then it will be
-- added with no attributes with a parent of the root graph.
--
-- Note that @&@ and @'decompose'@ are /not/ quite inverses, as this
-- function will add in the cluster if it does not yet exist in the
-- graph, but 'decompose' will not delete it.
(&) :: (Ord n) => Context n -> DotGraph n -> DotGraph n
(Cntxt n mc as ps ss) & dg = withValues merge dg'
where
ps' = toMap ps
ps'' = M.delete n ps'
ss' = toMap ss
ss'' = M.delete n ss'
dg' = addNode n mc as dg
merge = addSucc n ps'' . addPred n ss''
. M.adjust (\ni -> ni { _predecessors = ps', _successors = ss' }) n
infixr 5 &
-- | Recursively merge the list of contexts.
--
-- > composeList = foldr (&) emptyGraph
composeList :: (Ord n) => [Context n] -> DotGraph n
composeList = foldr (&) emptyGraph
addSucc :: (Ord n) => n -> EdgeMap n -> NodeMap n -> NodeMap n
addSucc = addPS niSucc
addPred :: (Ord n) => n -> EdgeMap n -> NodeMap n -> NodeMap n
addPred = addPS niPred
addPS :: (Ord n) => ((EdgeMap n -> EdgeMap n) -> NodeInfo n -> NodeInfo n)
-> n -> EdgeMap n -> NodeMap n -> NodeMap n
addPS fni t fas nm = t `seq` foldl' addSucc' nm fas'
where
fas' = fromMap fas
addSucc' nm' (f,as) = f `seq` M.alter (addS as) f nm'
addS as = Just
. maybe (error "Node not in the graph!")
(fni (M.insertWith (++) t [as]))
-- | Add a node to the current graph. Throws an error if the node
-- already exists in the graph.
--
-- If the specified cluster does not yet exist in the graph, then it
-- will be added (as a sub-graph of the overall graph and no
-- attributes).
addNode :: (Ord n)
=> n
-> Maybe GraphID -- ^ The cluster the node can be found in
-- (@Nothing@ refers to the root graph).
-> Attributes
-> DotGraph n
-> DotGraph n
addNode n mc as dg
| n `M.member` ns = error "Node already exists in the graph"
| otherwise = addEmptyCluster mc
$ dg { values = ns' }
where
ns = values dg
ns' = M.insert n (NI mc as M.empty M.empty) ns
-- | A variant of 'addNode' that takes in a DotNode (not in a
-- cluster).
addDotNode :: (Ord n) => DotNode n -> DotGraph n -> DotGraph n
addDotNode (DotNode n as) = addNode n Nothing as
-- | Add the specified edge to the graph; assumes both node values are
-- already present in the graph. If the graph is undirected then
-- the order of nodes doesn't matter.
addEdge :: (Ord n) => n -> n -> Attributes -> DotGraph n -> DotGraph n
addEdge f t as = withValues merge
where
-- Add the edge assuming it's directed; let the getter functions
-- be smart regarding directedness.
merge = addPred t (M.singleton f [as]) . addSucc f (M.singleton t [as])
-- | A variant of 'addEdge' that takes a 'DotEdge' value.
addDotEdge :: (Ord n) => DotEdge n -> DotGraph n -> DotGraph n
addDotEdge (DotEdge f t as) = addEdge f t as
-- | Add a new cluster to the graph; throws an error if the cluster
-- already exists. Assumes that it doesn't match the identifier of
-- the overall graph. If the parent cluster doesn't already exist
-- in the graph then it will be added.
addCluster :: GraphID -- ^ The identifier for this cluster.
-> Maybe GraphID -- ^ The parent of this cluster
-- (@Nothing@ refers to the root
-- graph)
-> [GlobalAttributes]
-> DotGraph n
-> DotGraph n
addCluster c mp gas dg
| c `M.member` cs = error "Cluster already exists in the graph"
| otherwise = addEmptyCluster mp
$ dg { clusters = M.insert c ci cs }
where
cs = clusters dg
ci = CI mp $ toGlobAttrs gas
-- Used to make sure that the parent cluster exists
addEmptyCluster :: Maybe GraphID -> DotGraph n -> DotGraph n
addEmptyCluster = maybe id (withClusters . (`dontReplace` defCI))
where
dontReplace = M.insertWith (const id)
defCI = CI Nothing emptyGA
-- | Specify the parent of the cluster; adds both in if not already present.
setClusterParent :: GraphID -> Maybe GraphID -> DotGraph n -> DotGraph n
setClusterParent c p = withClusters (M.adjust setP c) . addCs
where
addCs = addEmptyCluster p . addEmptyCluster (Just c)
setP ci = ci { parentCluster = p }
-- | Specify the attributes of the cluster; adds it if not already
-- present.
setClusterAttributes :: GraphID -> [GlobalAttributes]
-> DotGraph n -> DotGraph n
setClusterAttributes c gas = withClusters (M.adjust setAs c)
. addEmptyCluster (Just c)
where
setAs ci = ci { clusterAttrs = toGlobAttrs gas }
-- | Create a graph with no clusters.
mkGraph :: (Ord n) => [DotNode n] -> [DotEdge n] -> DotGraph n
mkGraph ns es = flip (foldl' $ flip addDotEdge) es
$ foldl' (flip addDotNode) emptyGraph ns
-- | Convert this DotGraph into canonical form. All edges are found
-- in the outer graph rather than in clusters.
toCanonical :: (Ord n) => DotGraph n -> C.DotGraph n
toCanonical dg = C.DotGraph { C.strictGraph = strictGraph dg
, C.directedGraph = directedGraph dg
, C.graphID = graphID dg
, C.graphStatements = stmts
}
where
stmts = C.DotStmts { C.attrStmts = fromGlobAttrs $ graphAttrs dg
, C.subGraphs = cs
, C.nodeStmts = ns
, C.edgeStmts = getEdgeInfo False dg
}
cls = clusters dg
pM = clusterPath' dg
clustAs = maybe [] (fromGlobAttrs . clusterAttrs) . (`M.lookup`cls)
lns = map (\ (n,ni) -> (n,(_inCluster ni, _attributes ni)))
. M.assocs $ values dg
(cs,ns) = clustersToNodes pathOf (const True) id clustAs snd lns
pathOf (n,(c,as)) = pathFrom c (n,as)
pathFrom c ln = F.foldr C (N ln) . fromMaybe Seq.empty $ (`M.lookup`pM) =<< c
-- -----------------------------------------------------------------------------
-- Deconstruction
-- | A partial inverse of @'&'@, in that if a node exists in a graph
-- then it will be decomposed, but will not remove the cluster that
-- it was in even if it was the only node in that cluster.
decompose :: (Ord n) => n -> DotGraph n -> Maybe (Context n, DotGraph n)
decompose n dg
| n `M.notMember` ns = Nothing
| otherwise = Just (c, dg')
where
ns = values dg
(Just (NI mc as ps ss), ns') = M.updateLookupWithKey (const . const Nothing) n ns
c = Cntxt n mc as (fromMap $ n `M.delete` ps) (fromMap ss)
dg' = dg { values = delSucc n ps . delPred n ss $ ns' }
-- | As with 'decompose', but do not specify /which/ node to
-- decompose.
decomposeAny :: (Ord n) => DotGraph n -> Maybe (Context n, DotGraph n)
decomposeAny dg
| isEmpty dg = Nothing
| otherwise = decompose (fst . M.findMin $ values dg) dg
-- | Recursively decompose the Dot graph into a list of contexts such
-- that if @(c:cs) = decomposeList dg@, then @dg = c & 'composeList' cs@.
--
-- Note that all global attributes are lost, so this is /not/
-- suitable for representing a Dot graph on its own.
decomposeList :: (Ord n) => DotGraph n -> [Context n]
decomposeList = unfoldr decomposeAny
delSucc :: (Ord n) => n -> EdgeMap n -> NodeMap n -> NodeMap n
delSucc = delPS niSucc
delPred :: (Ord n) => n -> EdgeMap n -> NodeMap n -> NodeMap n
delPred = delPS niPred
-- Only takes in EdgeMap rather than [n] to make it easier to call
-- from decompose
delPS :: (Ord n) => ((EdgeMap n -> EdgeMap n) -> NodeInfo n -> NodeInfo n)
-> n -> EdgeMap n -> NodeMap n -> NodeMap n
delPS fni t fm nm = foldl' delE nm $ M.keys fm
where
delE nm' f = M.adjust (fni $ M.delete t) f nm'
-- | Delete the specified node from the graph; returns the original
-- graph if that node isn't present.
deleteNode :: (Ord n) => n -> DotGraph n -> DotGraph n
deleteNode n dg = maybe dg snd $ decompose n dg
-- | Delete all edges between the two nodes; returns the original
-- graph if there are no edges.
deleteAllEdges :: (Ord n) => n -> n -> DotGraph n -> DotGraph n
deleteAllEdges n1 n2 = withValues (delAE n1 n2 . delAE n2 n1)
where
delAE f t = delSucc f t' . delPred f t'
where
t' = M.singleton t []
-- | Deletes the specified edge from the DotGraph (note: for unordered
-- graphs both orientations are considered).
deleteEdge :: (Ord n) => n -> n -> Attributes -> DotGraph n -> DotGraph n
deleteEdge n1 n2 as dg = withValues delEs dg
where
delE f t = M.adjust (niSucc $ M.adjust (delete as) t) f
. M.adjust (niPred $ M.adjust (delete as) f) t
delEs | directedGraph dg = delE n1 n2
| otherwise = delE n1 n2 . delE n2 n1
-- | As with 'deleteEdge' but takes a 'DotEdge' rather than individual
-- values.
deleteDotEdge :: (Ord n) => DotEdge n -> DotGraph n -> DotGraph n
deleteDotEdge (DotEdge n1 n2 as) = deleteEdge n1 n2 as
-- | Delete the specified cluster, and makes any clusters or nodes
-- within it be in its root cluster (or the overall graph if
-- required).
deleteCluster :: (Ord n) => GraphID -> DotGraph n -> DotGraph n
deleteCluster c dg = withValues (M.map adjNode)
. withClusters (M.map adjCluster . M.delete c)
$ dg
where
p = parentCluster =<< c `M.lookup` clusters dg
adjParent p'
| p' == Just c = p
| otherwise = p'
adjNode ni = ni { _inCluster = adjParent $ _inCluster ni }
adjCluster ci = ci { parentCluster = adjParent $ parentCluster ci }
-- | Remove clusters with no sub-clusters and no nodes within them.
removeEmptyClusters :: (Ord n) => DotGraph n -> DotGraph n
removeEmptyClusters dg = dg { clusters = cM' }
where
cM = clusters dg
cM' = (cM `M.difference` invCs) `M.difference` invNs
invCs = usedClustsIn $ M.map parentCluster cM
invNs = usedClustsIn . M.map _inCluster $ values dg
usedClustsIn = M.fromAscList
. map ((,) <$> fst . head <*> map snd)
. groupSortBy fst
. mapMaybe (uncurry (fmap . flip (,)))
. M.assocs
-- -----------------------------------------------------------------------------
-- Information
-- | Does this graph have any nodes?
isEmpty :: DotGraph n -> Bool
isEmpty = M.null . values
-- | Does this graph have any clusters?
hasClusters :: DotGraph n -> Bool
hasClusters = M.null . clusters
-- | Determine if this graph has nodes or clusters.
isEmptyGraph :: DotGraph n -> Bool
isEmptyGraph = liftA2 (&&) isEmpty (not . hasClusters)
graphAttributes :: DotGraph n -> [GlobalAttributes]
graphAttributes = fromGlobAttrs . graphAttrs
-- | Return the ID for the cluster the node is in.
foundInCluster :: (Ord n) => DotGraph n -> n -> Maybe GraphID
foundInCluster dg n = _inCluster $ values dg M.! n
-- | Return the attributes for the node.
attributesOf :: (Ord n) => DotGraph n -> n -> Attributes
attributesOf dg n = _attributes $ values dg M.! n
-- | Predecessor edges for the specified node. For undirected graphs
-- equivalent to 'adjacentTo'.
predecessorsOf :: (Ord n) => DotGraph n -> n -> [DotEdge n]
predecessorsOf dg t
| directedGraph dg = emToDE (`DotEdge` t)
. _predecessors $ values dg M.! t
| otherwise = adjacentTo dg t
-- | Successor edges for the specified node. For undirected graphs
-- equivalent to 'adjacentTo'.
successorsOf :: (Ord n) => DotGraph n -> n -> [DotEdge n]
successorsOf dg f
| directedGraph dg = emToDE (DotEdge f)
. _successors $ values dg M.! f
| otherwise = adjacentTo dg f
-- | All edges involving this node.
adjacentTo :: (Ord n) => DotGraph n -> n -> [DotEdge n]
adjacentTo dg n = sucs ++ preds
where
ni = values dg M.! n
sucs = emToDE (DotEdge n) $ _successors ni
preds = emToDE (`DotEdge` n) $ n `M.delete` _predecessors ni
emToDE :: (Ord n) => (n -> Attributes -> DotEdge n)
-> EdgeMap n -> [DotEdge n]
emToDE f = map (uncurry f) . fromMap
-- | Which cluster (or the root graph) is this cluster in?
parentOf :: DotGraph n -> GraphID -> Maybe GraphID
parentOf dg c = parentCluster $ clusters dg M.! c
clusterAttributes :: DotGraph n -> GraphID -> [GlobalAttributes]
clusterAttributes dg c = fromGlobAttrs . clusterAttrs $ clusters dg M.! c
-- -----------------------------------------------------------------------------
-- For DotRepr instance
instance (Ord n) => DotRepr DotGraph n where
fromCanonical = fromDotRepr
getID = graphID
setID i g = g { graphID = Just i }
graphIsDirected = directedGraph
setIsDirected d g = g { directedGraph = d }
graphIsStrict = strictGraph
setStrictness s g = g { strictGraph = s }
mapDotGraph = mapNs
graphStructureInformation = getGraphInfo
nodeInformation = getNodeInfo
edgeInformation = getEdgeInfo
unAnonymise = id -- No anonymous clusters!
instance (Ord n) => G.FromGeneralisedDot DotGraph n where
fromGeneralised = fromDotRepr
instance (Ord n, PrintDot n) => PrintDotRepr DotGraph n
instance (Ord n, ParseDot n) => ParseDotRepr DotGraph n
instance (Ord n, PrintDot n, ParseDot n) => PPDotRepr DotGraph n
-- | Uses the PrintDot instance for canonical 'C.DotGraph's.
instance (Ord n, PrintDot n) => PrintDot (DotGraph n) where
unqtDot = unqtDot . toCanonical
-- | Uses the ParseDot instance for generalised 'G.DotGraph's.
instance (Ord n, ParseDot n) => ParseDot (DotGraph n) where
parseUnqt = fromGDot <$> parseUnqt
where
-- fromGDot :: G.DotGraph n -> DotGraph n
fromGDot = fromDotRepr . (`asTypeOf` (undefined :: G.DotGraph n))
parse = parseUnqt -- Don't want the option of quoting
cOptions :: CanonicaliseOptions
cOptions = COpts { edgesInClusters = False
, groupAttributes = True
}
-- | Convert any existing DotRepr instance to a 'DotGraph'.
fromDotRepr :: (DotRepr dg n) => dg n -> DotGraph n
fromDotRepr = unsafeFromCanonical . canonicaliseOptions cOptions . unAnonymise
-- | Convert a canonical Dot graph to a graph-based one. This assumes
-- that the canonical graph is the same format as returned by
-- 'toCanonical'. The \"unsafeness\" is that:
--
-- * All clusters must have a unique identifier ('unAnonymise' can
-- be used to make sure all clusters /have/ an identifier, but it
-- doesn't ensure uniqueness).
--
-- * All nodes are assumed to be explicitly listed precisely once.
--
-- * Only edges found in the root graph are considered.
--
-- If this isn't the case, use 'fromCanonical' instead.
--
-- The 'graphToDot' function from "Data.GraphViz" produces output
-- suitable for this function (assuming all clusters are provided
-- with a unique identifier); 'graphElemsToDot' is suitable if all
-- nodes are specified in the input list (rather than just the
-- edges).
unsafeFromCanonical :: (Ord n) => C.DotGraph n -> DotGraph n
unsafeFromCanonical dg = DG { strictGraph = C.strictGraph dg
, directedGraph = dirGraph
, graphAttrs = as
, graphID = mgid
, clusters = cs
, values = ns
}
where
stmts = C.graphStatements dg
mgid = C.graphID dg
dirGraph = C.directedGraph dg
(as, cs, ns) = fCStmt Nothing stmts
fCStmt p stmts' = (sgAs, cs', ns')
where
sgAs = toGlobAttrs $ C.attrStmts stmts'
(cs', sgNs) = (M.unions *** M.unions) . unzip
. map (fCSG p) $ C.subGraphs stmts'
nNs = M.fromList . map (fDN p) $ C.nodeStmts stmts'
ns' = sgNs `M.union` nNs
fCSG p sg = (M.insert sgid ci cs', ns')
where
msgid@(Just sgid) = C.subGraphID sg
(as', cs', ns') = fCStmt msgid $ C.subGraphStmts sg
ci = CI p as'
fDN p (DotNode n as') = ( n
, NI { _inCluster = p
, _attributes = as'
, _predecessors = eSel n tEs
, _successors = eSel n fEs
}
)
es = C.edgeStmts stmts
fEs = toEdgeMap fromNode toNode es
tEs = delLoops $ toEdgeMap toNode fromNode es
eSel n es' = fromMaybe M.empty $ n `M.lookup` es'
delLoops = M.mapWithKey M.delete
toEdgeMap :: (Ord n) => (DotEdge n -> n) -> (DotEdge n -> n) -> [DotEdge n]
-> Map n (EdgeMap n)
toEdgeMap f t = M.map eM . M.fromList . groupSortCollectBy f t'
where
t' = liftA2 (,) t edgeAttributes
eM = M.fromList . groupSortCollectBy fst snd
mapNs :: (Ord n, Ord n') => (n -> n') -> DotGraph n -> DotGraph n'
mapNs f (DG st d as mid cs vs) = DG st d as mid cs
$ mapNM vs
where
mapNM = M.map mapNI . mpM
mapNI (NI mc as' ps ss) = NI mc as' (mpM ps) (mpM ss)
mpM = M.mapKeys f
getGraphInfo :: DotGraph n -> (GlobalAttributes, ClusterLookup)
getGraphInfo dg = (gas, cl)
where
toGA = GraphAttrs . unSame
(gas, cgs) = (toGA *** M.map toGA) $ globAttrMap graphAs dg
pM = M.map pInit $ clusterPath dg
cl = M.mapWithKey addPath $ M.mapKeysMonotonic Just cgs
addPath c as = ( maybe [] (:[]) $ c `M.lookup` pM
, as
)
pInit p = case Seq.viewr p of
(p' Seq.:> _) -> p'
_ -> Seq.empty
getNodeInfo :: (Ord n) => Bool -> DotGraph n
-> NodeLookup n
getNodeInfo withGlob dg = M.map toLookup ns
where
(gGlob, aM) = globAttrMap nodeAs dg
pM = clusterPath dg
ns = values dg
toLookup ni = (pth, as')
where
as = _attributes ni
mp = _inCluster ni
pth = fromMaybe Seq.empty $ mp `M.lookup` pM
pAs = fromMaybe gGlob $ (`M.lookup` aM) =<< mp
as' | withGlob = unSame $ toSAttr as `S.union` pAs
| otherwise = as
getEdgeInfo :: (Ord n) => Bool -> DotGraph n -> [DotEdge n]
getEdgeInfo withGlob dg = concatMap (uncurry mkDotEdges) es
where
gGlob = edgeAs $ graphAttrs dg
es = concatMap (uncurry (map . (,)))
. M.assocs . M.map (M.assocs . _successors)
$ values dg
addGlob as
| withGlob = unSame $ toSAttr as `S.union` gGlob
| otherwise = as
mkDotEdges f (t, ass) = map (DotEdge f t . addGlob) ass
globAttrMap :: (GlobAttrs -> SAttrs) -> DotGraph n
-> (SAttrs, Map GraphID SAttrs)
globAttrMap af dg = (gGlob, aM)
where
gGlob = af $ graphAttrs dg
cs = clusters dg
aM = M.map attrsFor cs
attrsFor ci = as `S.union` pAs
where
as = af $ clusterAttrs ci
p = parentCluster ci
pAs = fromMaybe gGlob $ (`M.lookup` aM) =<< p
clusterPath :: DotGraph n -> Map (Maybe GraphID) St.Path
clusterPath = M.mapKeysMonotonic Just . M.map (fmap Just) . clusterPath'
clusterPath' :: DotGraph n -> Map GraphID (Seq.Seq GraphID)
clusterPath' dg = pM
where
cs = clusters dg
pM = M.mapWithKey pathOf cs
pathOf c ci = pPth Seq.|> c
where
mp = parentCluster ci
pPth = fromMaybe Seq.empty $ (`M.lookup` pM) =<< mp
-- -----------------------------------------------------------------------------
withValues :: (Ord n) => (NodeMap n -> NodeMap n)
-> DotGraph n -> DotGraph n
withValues f dg = dg { values = f $ values dg }
withClusters :: (Map GraphID ClusterInfo -> Map GraphID ClusterInfo)
-> DotGraph n -> DotGraph n
withClusters f dg = dg { clusters = f $ clusters dg }
toGlobAttrs :: [GlobalAttributes] -> GlobAttrs
toGlobAttrs = mkGA . partitionGlobal
where
mkGA (ga,na,ea) = GA (toSAttr ga) (toSAttr na) (toSAttr ea)
fromGlobAttrs :: GlobAttrs -> [GlobalAttributes]
fromGlobAttrs (GA ga na ea) = filter (not . null . attrs)
[ GraphAttrs $ unSame ga
, NodeAttrs $ unSame na
, EdgeAttrs $ unSame ea
]
niSucc :: (Ord n) => (EdgeMap n -> EdgeMap n) -> NodeInfo n -> NodeInfo n
niSucc f ni = ni { _successors = f $ _successors ni }
niPred :: (Ord n) => (EdgeMap n -> EdgeMap n) -> NodeInfo n -> NodeInfo n
niPred f ni = ni { _predecessors = f $ _predecessors ni }
toMap :: (Ord n) => [(n, Attributes)] -> EdgeMap n
toMap = M.fromAscList . groupSortCollectBy fst snd
fromMap :: EdgeMap n -> [(n, Attributes)]
fromMap = concatMap (uncurry (map . (,))) . M.toList
|