File: ManagedPtr.hs

package info (click to toggle)
haskell-haskell-gi-base 0.26.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 408 kB
  • sloc: haskell: 1,604; ansic: 324; makefile: 5
file content (446 lines) | stat: -rw-r--r-- 17,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
{-# LANGUAGE FlexibleContexts, ScopedTypeVariables #-}
-- For HasCallStack compatibility
{-# LANGUAGE ImplicitParams, KindSignatures, ConstraintKinds #-}
{-# LANGUAGE TypeApplications #-}

-- | We wrap most objects in a "managed pointer", which is basically a
-- 'ForeignPtr' of the appropriate type together with a notion of
-- "disowning", which means not running the finalizers passed upon
-- construction of the object upon garbage collection. The routines in
-- this module deal with the memory management of such managed
-- pointers.

module Data.GI.Base.ManagedPtr
    (
    -- * Managed pointers
      newManagedPtr
    , newManagedPtr'
    , newManagedPtr_
    , withManagedPtr
    , maybeWithManagedPtr
    , withManagedPtrList
    , withTransient
    , unsafeManagedPtrGetPtr
    , unsafeManagedPtrCastPtr
    , touchManagedPtr
    , disownManagedPtr

    -- * Safe casting
    , castTo
    , unsafeCastTo
    , checkInstanceType

    -- * Wrappers
    , newObject
    , withNewObject
    , wrapObject
    , releaseObject
    , unrefObject
    , disownObject
    , newBoxed
    , wrapBoxed
    , copyBoxed
    , copyBoxedPtr
    , freeBoxed
    , disownBoxed
    , wrapPtr
    , newPtr
    , copyBytes
    ) where

#if !MIN_VERSION_base(4,8,0)
import Control.Applicative ((<$>))
#endif
import Control.Monad (when, void)
import Control.Monad.Fix (mfix)

import Data.Coerce (coerce)
import Data.IORef (newIORef, readIORef, writeIORef, IORef)
import Data.Maybe (isNothing, isJust)
#if !MIN_VERSION_base(4,11,0)
import Data.Monoid ((<>))
#endif

import Foreign.C (CInt(..))
import Foreign.Ptr (Ptr, FunPtr, castPtr, nullPtr)
import Foreign.ForeignPtr (FinalizerPtr, touchForeignPtr, newForeignPtr_)
import qualified Foreign.Concurrent as FC
import Foreign.ForeignPtr.Unsafe (unsafeForeignPtrToPtr)

import Data.GI.Base.BasicTypes
import Data.GI.Base.CallStack (CallStack, HasCallStack,
                               prettyCallStack, callStack)
import Data.GI.Base.Utils

import qualified Data.Text as T

import System.IO (hPutStrLn, stderr)
import System.Environment (lookupEnv)

-- | Thin wrapper over `Foreign.Concurrent.newForeignPtr`.
newManagedPtr :: HasCallStack => Ptr a -> IO () -> IO (ManagedPtr a)
newManagedPtr ptr finalizer = do
  isDisownedRef <- newIORef Nothing
  dbgMode <- isJust <$> lookupEnv "HASKELL_GI_DEBUG_MEM"
  let dbgCallStack = if dbgMode
                     then Just callStack
                     else Nothing
  fPtr <- FC.newForeignPtr ptr (ownedFinalizer finalizer ptr dbgCallStack isDisownedRef)
  return $ ManagedPtr {
               managedForeignPtr = fPtr
             , managedPtrAllocCallStack = dbgCallStack
             , managedPtrIsDisowned = isDisownedRef
             }

-- | Run the finalizer for an owned pointer, assuming it has now been
-- disowned.
ownedFinalizer :: IO () -> Ptr a -> Maybe CallStack -> IORef (Maybe CallStack)
               -> IO ()
ownedFinalizer finalizer ptr allocCallStack callStackRef = do
  cs <- readIORef callStackRef
  -- cs will be @Just cs@ whenever the pointer has been disowned.
  when (isNothing cs) $ case allocCallStack of
                          Just acs -> do
                            printAllocDebug ptr acs
                            finalizer
                            dbgLog (T.pack "Released successfully.\n")
                          Nothing -> finalizer

-- | Print some debug diagnostics for an allocation.
printAllocDebug :: Ptr a -> CallStack -> IO ()
printAllocDebug ptr allocCS =
  (dbgLog . T.pack) ("Releasing <" <> show ptr <> ">. "
                     <> "Callstack for allocation was:\n"
                     <> prettyCallStack allocCS <> "\n\n")

foreign import ccall "dynamic"
   mkFinalizer :: FinalizerPtr a -> Ptr a -> IO ()

-- | Version of `newManagedPtr` taking a `FinalizerPtr` and a
-- corresponding `Ptr`, as in `Foreign.ForeignPtr.newForeignPtr`.
newManagedPtr' :: HasCallStack => FinalizerPtr a -> Ptr a -> IO (ManagedPtr a)
newManagedPtr' finalizer ptr = newManagedPtr ptr (mkFinalizer finalizer ptr)

-- | Thin wrapper over `Foreign.Concurrent.newForeignPtr_`.
newManagedPtr_ :: Ptr a -> IO (ManagedPtr a)
newManagedPtr_ ptr = do
  isDisownedRef <- newIORef Nothing
  fPtr <- newForeignPtr_ ptr
  return $ ManagedPtr {
               managedForeignPtr = fPtr
             , managedPtrAllocCallStack = Nothing
             , managedPtrIsDisowned = isDisownedRef
             }

-- | Do not run the finalizers upon garbage collection of the
-- `ManagedPtr`.
disownManagedPtr :: forall a b. (HasCallStack, ManagedPtrNewtype a) => a -> IO (Ptr b)
disownManagedPtr managed = do
  ptr <- unsafeManagedPtrGetPtr managed
  writeIORef (managedPtrIsDisowned c) (Just callStack)
  return (castPtr ptr)
    where c = toManagedPtr managed

-- | Perform an IO action on the 'Ptr' inside a managed pointer.
withManagedPtr :: (HasCallStack, ManagedPtrNewtype a) => a -> (Ptr a -> IO c) -> IO c
withManagedPtr managed action = do
  ptr <- unsafeManagedPtrGetPtr managed
  result <- action ptr
  touchManagedPtr managed
  return result

-- | Like `withManagedPtr`, but accepts a `Maybe` type. If the passed
-- value is `Nothing` the inner action will be executed with a
-- `nullPtr` argument.
maybeWithManagedPtr :: (HasCallStack, ManagedPtrNewtype a) => Maybe a -> (Ptr a -> IO c) -> IO c
maybeWithManagedPtr Nothing action = action nullPtr
maybeWithManagedPtr (Just managed) action = withManagedPtr managed action

-- | Perform an IO action taking a list of 'Ptr' on a list of managed
-- pointers.
withManagedPtrList :: (HasCallStack, ManagedPtrNewtype a) => [a] -> ([Ptr a] -> IO c) -> IO c
withManagedPtrList managedList action = do
  ptrs <- mapM unsafeManagedPtrGetPtr managedList
  result <- action ptrs
  mapM_ touchManagedPtr managedList
  return result

-- | Perform the IO action with a transient managed pointer. The
-- managed pointer will be valid while calling the action, but will be
-- disowned as soon as the action finishes.
withTransient :: (HasCallStack, ManagedPtrNewtype a)
              => Ptr a -> (a -> IO b) -> IO b
withTransient ptr action = do
  managed <- coerce <$> newManagedPtr_ ptr
  r <- action managed
  _ <- disownManagedPtr managed
  return r

-- | Return the 'Ptr' in a given managed pointer. As the name says,
-- this is potentially unsafe: the given 'Ptr' may only be used
-- /before/ a call to 'touchManagedPtr'. This function is of most
-- interest to the autogenerated bindings, for hand-written code
-- 'withManagedPtr' is almost always a better choice.
unsafeManagedPtrGetPtr :: (HasCallStack, ManagedPtrNewtype a) => a -> IO (Ptr a)
unsafeManagedPtrGetPtr = unsafeManagedPtrCastPtr

-- | Same as 'unsafeManagedPtrGetPtr', but is polymorphic on the
-- return type.
unsafeManagedPtrCastPtr :: forall a b. (HasCallStack, ManagedPtrNewtype a) =>
                           a -> IO (Ptr b)
unsafeManagedPtrCastPtr m = do
    let c = toManagedPtr m
        ptr = (castPtr . unsafeForeignPtrToPtr . managedForeignPtr) c
    disowned <- readIORef (managedPtrIsDisowned c)
    maybe (return ptr) (notOwnedWarning ptr) disowned

-- | Print a warning when we try to access a disowned foreign ptr.
notOwnedWarning :: HasCallStack => Ptr a -> CallStack -> IO (Ptr a)
notOwnedWarning ptr cs = do
  hPutStrLn stderr ("WARNING: Accessing a disowned pointer <" ++ show ptr
                     ++ ">, this may lead to crashes.\n\n"
                     ++ "• Callstack for the unsafe access to the pointer:\n"
                     ++ prettyCallStack callStack ++ "\n\n"
                     ++ "• The pointer was disowned at:\n"
                     ++ prettyCallStack cs ++ "\n")
  return ptr

-- | Ensure that the 'Ptr' in the given managed pointer is still alive
-- (i.e. it has not been garbage collected by the runtime) at the
-- point that this is called.
touchManagedPtr :: forall a. ManagedPtrNewtype a => a -> IO ()
touchManagedPtr m = let c = toManagedPtr m
                    in (touchForeignPtr . managedForeignPtr) c

-- Safe casting machinery
foreign import ccall unsafe "check_object_type"
    c_check_object_type :: Ptr o -> CGType -> IO CInt

-- | Check whether the given object is an instance of the given type.
checkInstanceType :: (ManagedPtrNewtype o, TypedObject o) =>
                     o -> GType -> IO Bool
checkInstanceType obj (GType cgtype) = withManagedPtr obj $ \objPtr -> do
  check <- c_check_object_type objPtr cgtype
  return $ check /= 0

-- | Cast from one object type to another, checking that the cast is
-- valid. If it is not, we return `Nothing`. Usage:
--
-- > maybeWidget <- castTo Widget label
castTo :: forall o o'. (HasCallStack,
                        ManagedPtrNewtype o, TypedObject o,
                        ManagedPtrNewtype o', TypedObject o',
                        GObject o') =>
          (ManagedPtr o' -> o') -> o -> IO (Maybe o')
castTo constructor obj = do
  gtype <- glibType @o'
  isInstance <- checkInstanceType obj gtype
  if isInstance
    then return . Just . constructor . coerce $ toManagedPtr obj
    else return Nothing

-- | Cast a typed object to a new type (without any assumption that
-- both types descend from `GObject`), assuming that the cast will
-- succeed. This function will call `error` if the cast is illegal.
unsafeCastTo :: forall o o'. (HasCallStack,
                              ManagedPtrNewtype o, TypedObject o,
                              ManagedPtrNewtype o', TypedObject o') =>
                (ManagedPtr o' -> o') -> o -> IO o'
unsafeCastTo constructor obj = do
    gtype <- glibType @o'
    isInstance <- checkInstanceType obj gtype
    if not isInstance
      then do
      srcType <- glibType @o >>= gtypeName
      destType <- glibType @o' >>= gtypeName
      error $ "unsafeCastTo :: invalid conversion from " ++ srcType ++ " to "
        ++ destType ++ " requested."
      else return (constructor $ coerce $ toManagedPtr obj)

-- Reference counting for constructors
foreign import ccall "&dbg_g_object_unref"
    ptr_to_g_object_unref :: FunPtr (Ptr a -> IO ())

foreign import ccall "g_object_ref_sink" g_object_ref_sink ::
    Ptr a -> IO (Ptr a)

-- | Print a warning when receiving a null pointer in a function that
-- did not expect one, for easier debugging.
nullPtrWarning :: String -> CallStack -> IO ()
nullPtrWarning fn cs =
  hPutStrLn stderr ("WARNING: Trying to wrap a null pointer in " ++ quotedFn
                     ++ ", this may lead to crashes.\n\n"
                     ++ "• Callstack for the unsafe call to "
                     ++ quotedFn ++ ":\n"
                     ++ prettyCallStack cs ++ "\n\n"
                     ++ "This is probably a bug in the introspection data,\n"
                     ++ "please report it at https://github.com/haskell-gi/haskell-gi/issues")
  where quotedFn = "‘" ++ fn ++ "’"

-- | Construct a Haskell wrapper for a 'GObject', increasing its
-- reference count, or taking ownership of the floating reference if
-- there is one.
newObject :: (HasCallStack, GObject a, GObject b) =>
             (ManagedPtr a -> a) -> Ptr b -> IO a
newObject constructor ptr = do
  when (ptr == nullPtr) (nullPtrWarning "newObject" callStack)
  void $ g_object_ref_sink ptr
  fPtr <- newManagedPtr' ptr_to_g_object_unref $ castPtr ptr
  return $! constructor fPtr

-- | Perform the given IO action with a wrapped copy of the given ptr
-- to a GObject. Note that this increases the reference count of the
-- wrapped GObject, similarly to 'newObject'.
withNewObject :: (HasCallStack, GObject o)
                  => Ptr o -> (o -> IO b) -> IO b
withNewObject ptr action = do
  void $ g_object_ref_sink ptr
  managed <- newManagedPtr' ptr_to_g_object_unref $ castPtr ptr
  action (coerce managed)

-- | Same as 'newObject', but we steal ownership of the object.
wrapObject :: forall a b. (HasCallStack, GObject a, GObject b) =>
              (ManagedPtr a -> a) -> Ptr b -> IO a
wrapObject constructor ptr = do
  when (ptr == nullPtr) (nullPtrWarning "wrapObject" callStack)
  fPtr <- newManagedPtr' ptr_to_g_object_unref $ castPtr ptr
  return $! constructor fPtr

-- | Unref the given `GObject` and disown it. Use this if you want to
-- manually release the memory associated to a given `GObject`
-- (assuming that no other reference to the underlying C object exists)
-- before the garbage collector does it. It is typically not safe to
-- access the `GObject` after calling this function.
releaseObject :: (HasCallStack, GObject a) => a -> IO ()
releaseObject obj = do
  ptr <- disownObject obj
  dbgDealloc obj
  dbg_g_object_unref ptr

-- It is fine to use unsafe here, since all this does is schedule an
-- idle callback. The scheduling itself will never block for a long
-- time, or call back into Haskell.
foreign import ccall unsafe "dbg_g_object_unref"
        dbg_g_object_unref :: Ptr a -> IO ()

-- | Decrease the reference count of the given 'GObject'. The memory
-- associated with the object may be released if the reference count
-- reaches 0.
unrefObject :: (HasCallStack, GObject a) => a -> IO ()
unrefObject obj = withManagedPtr obj $ \ptr -> do
  dbgDealloc obj
  dbg_g_object_unref ptr

-- | Print some debug info (if the right environment valiable is set)
-- about the object being disowned.
foreign import ccall "dbg_g_object_disown"
        dbg_g_object_disown :: Ptr a -> IO ()

-- | Disown a GObject, that is, do not unref the associated foreign
-- GObject when the Haskell object gets garbage collected. Returns the
-- pointer to the underlying GObject.
disownObject :: (HasCallStack, GObject a) => a -> IO (Ptr b)
disownObject obj = withManagedPtr obj $ \ptr -> do
  dbgDealloc obj
  dbg_g_object_disown ptr
  castPtr <$> disownManagedPtr obj

-- It is fine to use unsafe here, since all this does is schedule an
-- idle callback. The scheduling itself will never block for a long
-- time, or call back into Haskell.
foreign import ccall unsafe "boxed_free_helper" boxed_free_helper ::
    CGType -> Ptr a -> IO ()

foreign import ccall "g_boxed_copy" g_boxed_copy ::
    CGType -> Ptr a -> IO (Ptr a)

-- | Construct a Haskell wrapper for the given boxed object. We make a
-- copy of the object.
newBoxed :: forall a. (HasCallStack, GBoxed a) => (ManagedPtr a -> a) -> Ptr a -> IO a
newBoxed constructor ptr = do
  GType gtype <- glibType @a
  ptr' <- g_boxed_copy gtype ptr
  fPtr <- newManagedPtr ptr' (boxed_free_helper gtype ptr')
  return $! constructor fPtr

-- | Like 'newBoxed', but we do not make a copy (we "steal" the passed
-- object, so now it is managed by the Haskell runtime).
wrapBoxed :: forall a. (HasCallStack, GBoxed a) => (ManagedPtr a -> a) -> Ptr a -> IO a
wrapBoxed constructor ptr = do
  GType gtype <- glibType @a
  fPtr <- newManagedPtr ptr (boxed_free_helper gtype ptr)
  return $! constructor fPtr

-- | Make a copy of the given boxed object.
copyBoxed :: forall a. (HasCallStack, GBoxed a) => a -> IO (Ptr a)
copyBoxed b = do
  GType gtype <- glibType @a
  withManagedPtr b (g_boxed_copy gtype)

-- | Like 'copyBoxed', but acting directly on a pointer, instead of a
-- managed pointer.
copyBoxedPtr :: forall a. GBoxed a => Ptr a -> IO (Ptr a)
copyBoxedPtr ptr = do
  GType gtype <- glibType @a
  g_boxed_copy gtype ptr

foreign import ccall "g_boxed_free" g_boxed_free ::
    CGType -> Ptr a -> IO ()

-- | Free the memory associated with a boxed object. Note that this
-- disowns the associated `ManagedPtr` via `disownManagedPtr`.
freeBoxed :: forall a. (HasCallStack, GBoxed a) => a -> IO ()
freeBoxed boxed = do
  GType gtype <- glibType @a
  ptr <- disownManagedPtr boxed
  dbgDealloc boxed
  g_boxed_free gtype ptr

-- | Disown a boxed object, that is, do not free the associated
-- foreign GBoxed when the Haskell object gets garbage
-- collected. Returns the pointer to the underlying `GBoxed`.
disownBoxed :: (HasCallStack, GBoxed a) => a -> IO (Ptr a)
disownBoxed = disownManagedPtr

-- | Wrap a pointer, taking ownership of it.
wrapPtr :: (HasCallStack, BoxedPtr a) => (ManagedPtr a -> a) -> Ptr a -> IO a
wrapPtr constructor ptr = mfix $ \wrapped -> do
  fPtr <- newManagedPtr ptr (boxedPtrFree wrapped)
  return $! constructor fPtr

-- | Wrap a pointer, making a copy of the data.
newPtr :: (HasCallStack, BoxedPtr a) => (ManagedPtr a -> a) -> Ptr a -> IO a
newPtr constructor ptr = do
  tmpWrap <- newManagedPtr_ ptr
  ptr' <- boxedPtrCopy (constructor tmpWrap)
  return $! ptr'

-- | Make a copy of a wrapped pointer using @memcpy@ into a freshly
-- allocated memory region of the given size.
copyBytes :: (HasCallStack, CallocPtr a) => Int -> Ptr a -> IO (Ptr a)
copyBytes size ptr = do
  ptr' <- boxedPtrCalloc
  memcpy ptr' ptr size
  return ptr'

foreign import ccall unsafe "g_thread_self" g_thread_self :: IO (Ptr ())

-- | Same as `dbgDeallocPtr`, but for `ManagedPtr`s, and no callstack
-- needs to be provided.
dbgDealloc :: (HasCallStack, ManagedPtrNewtype a) => a -> IO ()
dbgDealloc m = do
  env <- lookupEnv "HASKELL_GI_DEBUG_MEM"
  case env of
    Nothing -> return ()
    Just _ -> do
      let mPtr = toManagedPtr m
          ptr = (unsafeForeignPtrToPtr . managedForeignPtr) mPtr
      threadPtr <- g_thread_self
      hPutStrLn stderr ("Releasing <" ++ show ptr ++ "> from thread ["
                         ++ show threadPtr ++ "].\n"
                         ++ (case managedPtrAllocCallStack mPtr of
                               Just allocCS -> "• Callstack for allocation:\n"
                                               ++ prettyCallStack allocCS ++ "\n\n"
                               Nothing -> "")
                         ++ "• CallStack for deallocation:\n"
                         ++ prettyCallStack callStack ++ "\n")