File: Callable.hs

package info (click to toggle)
haskell-haskell-gi 0.26.12-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 800 kB
  • sloc: haskell: 8,617; ansic: 74; makefile: 4
file content (997 lines) | stat: -rw-r--r-- 45,616 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
{-# LANGUAGE LambdaCase #-}
module Data.GI.CodeGen.Callable
    ( genCCallableWrapper
    , genDynamicCallableWrapper
    , ForeignSymbol(..)

    , hOutType
    , skipRetVal
    , arrayLengths
    , arrayLengthsMap
    , callableSignature
    , Signature(..)
    , fixupCallerAllocates

    , callableHInArgs
    , callableHOutArgs

    , wrapMaybe
    , inArgInterfaces
    ) where

import Control.Monad (forM, forM_, when, void)
import Data.Bool (bool)
import Data.List (nub)
import Data.Maybe (isJust)
#if !MIN_VERSION_base(4,13,0)
import Data.Monoid ((<>))
#endif
import Data.Tuple (swap)
import qualified Data.Map as Map
import qualified Data.Text as T
import Data.Text (Text)

import Data.GI.CodeGen.API
import Data.GI.CodeGen.Code
import Data.GI.CodeGen.Conversions
import Data.GI.CodeGen.Haddock (deprecatedPragma, writeHaddock,
                                writeDocumentation, RelativeDocPosition(..),
                                writeArgDocumentation, writeReturnDocumentation)
import Data.GI.CodeGen.SymbolNaming
import Data.GI.CodeGen.Transfer
import Data.GI.CodeGen.Type
import Data.GI.CodeGen.Util

import Text.Show.Pretty (ppShow)

hOutType :: Callable -> [Arg] -> ExcCodeGen TypeRep
hOutType callable outArgs = do
  hReturnType <- case returnType callable of
                   Nothing -> return $ con0 "()"
                   Just r -> if skipRetVal callable
                             then return $ con0 "()"
                             else haskellType r
  hOutArgTypes <- forM outArgs $ \outarg ->
                  wrapMaybe outarg >>= bool
                                (haskellType (argType outarg))
                                (maybeT <$> haskellType (argType outarg))
  nullableReturnType <- maybe (return False) typeIsNullable (returnType callable)
  let maybeHReturnType = if returnMayBeNull callable
                            && not (skipRetVal callable)
                            && nullableReturnType
                         then maybeT hReturnType
                         else hReturnType
  return $ case (outArgs, typeShow maybeHReturnType) of
             ([], _)   -> maybeHReturnType
             (_, "()") -> "(,)" `con` hOutArgTypes
             _         -> "(,)" `con` (maybeHReturnType : hOutArgTypes)

-- | Generate a foreign import for the given C symbol. Return the name
-- of the corresponding Haskell identifier.
mkForeignImport :: Text -> Callable -> CodeGen e Text
mkForeignImport cSymbol callable = do
    line first
    indent $ do
        mapM_ (\a -> line =<< fArgStr a) (args callable)
        when (callableThrows callable) $
               line $ padTo 40 "Ptr (Ptr GError) -> " <> "-- error"
        line =<< last
    return hSymbol
    where
    hSymbol = if T.any (== '_') cSymbol
              then lcFirst cSymbol
              else "_" <> cSymbol
    first = "foreign import ccall \"" <> cSymbol <> "\" " <> hSymbol <> " :: "
    fArgStr arg = do
        ft <- foreignType $ argType arg
        let ft' = if direction arg == DirectionIn || argCallerAllocates arg
                  then ft
                  else ptr ft
        let start = typeShow ft' <> " -> "
        return $ padTo 40 start <> "-- " <> (argCName arg)
                   <> " : " <> tshow (argType arg)
    last = typeShow <$> io <$> case returnType callable of
                                 Nothing -> return $ con0 "()"
                                 Just r  -> foreignType r

-- | Make a wrapper for foreign `FunPtr`s of the given type. Return
-- the name of the resulting dynamic Haskell wrapper.
mkDynamicImport :: Text -> CodeGen e Text
mkDynamicImport typeSynonym = do
  line $ "foreign import ccall \"dynamic\" " <> dynamic <> " :: FunPtr "
           <> typeSynonym <> " -> " <> typeSynonym
  return dynamic
      where dynamic = "__dynamic_" <> typeSynonym

-- | Given an argument to a function, return whether it should be
-- wrapped in a maybe type (useful for nullable types). We do some
-- sanity checking to make sure that the argument is actually nullable
-- (a relatively common annotation mistake is to mix up (optional)
-- with (nullable)).
wrapMaybe :: Arg -> CodeGen e Bool
wrapMaybe arg = if mayBeNull arg
                then typeIsNullable (argType arg)
                else return False

-- | Given the list of arguments returns the list of constraints and the
-- list of types in the signature.
inArgInterfaces :: [Arg] -> ExposeClosures -> ExcCodeGen ([Text], [Text])
inArgInterfaces args expose = do
  resetTypeVariableScope
  go args
  where go [] = return ([], [])
        go (arg:args) = do
          (t, cons) <- argumentType (argType arg) expose
          t' <- wrapMaybe arg >>= bool (return t)
            (return $ "Maybe (" <> t <> ")")
          (restCons, restTypes) <- go args
          return (cons <> restCons, t' : restTypes)

-- Given a callable, return a list of (array, length) pairs, where in
-- each pair "length" is the argument holding the length of the
-- (non-zero-terminated, non-fixed size) C array.
arrayLengthsMap :: Callable -> [(Arg, Arg)] -- List of (array, length)
arrayLengthsMap callable = go (args callable) []
    where
      go :: [Arg] -> [(Arg, Arg)] -> [(Arg, Arg)]
      go [] acc = acc
      go (a:as) acc = case argType a of
                        TCArray False fixedSize length _ ->
                            if fixedSize > -1 || length == -1
                            then go as acc
                            else go as $ (a, (args callable)!!length) : acc
                        _ -> go as acc

-- Return the list of arguments of the callable that contain length
-- arguments, including a possible length for the result of calling
-- the function.
arrayLengths :: Callable -> [Arg]
arrayLengths callable = map snd (arrayLengthsMap callable) <>
               -- Often one of the arguments is just the length of
               -- the result.
               case returnType callable of
                 Just (TCArray False (-1) length _) ->
                     if length > -1
                     then [(args callable)!!length]
                     else []
                 _ -> []

-- This goes through a list of [(a,b)], and tags every entry where the
-- "b" field has occurred before with the value of "a" for which it
-- occurred. (The first appearance is not tagged.)
classifyDuplicates :: Ord b => [(a, b)] -> [(a, b, Maybe a)]
classifyDuplicates args = doClassify Map.empty args
    where doClassify :: Ord b => Map.Map b a -> [(a, b)] -> [(a, b, Maybe a)]
          doClassify _ [] = []
          doClassify found ((value, key):args) =
              (value, key, Map.lookup key found) :
                doClassify (Map.insert key value found) args

-- Read the length of in array arguments from the corresponding
-- Haskell objects. A subtlety is that sometimes a single length
-- argument is expected from the C side to encode the length of
-- various lists. Ideally we would encode this in the types, but the
-- resulting API would be rather cumbersome. We insted perform runtime
-- checks to make sure that the given lists have the same length.
readInArrayLengths :: Name -> Callable -> [Arg] -> ExcCodeGen ()
readInArrayLengths name callable hInArgs = do
  let lengthMaps = classifyDuplicates $ arrayLengthsMap callable
  forM_ lengthMaps $ \(array, length, duplicate) ->
      when (array `elem` hInArgs) $
        case duplicate of
        Nothing -> readInArrayLength array length
        Just previous -> checkInArrayLength name array length previous

-- Read the length of an array into the corresponding variable.
readInArrayLength :: Arg -> Arg -> ExcCodeGen ()
readInArrayLength array length = do
  let lvar = escapedArgName length
      avar = escapedArgName array
  wrapMaybe array >>= bool
                (do
                  al <- computeArrayLength avar (argType array)
                  line $ "let " <> lvar <> " = " <> al)
                (do
                  line $ "let " <> lvar <> " = case " <> avar <> " of"
                  indent $ indent $ do
                    line $ "Nothing -> 0"
                    let jarray = "j" <> ucFirst avar
                    al <- computeArrayLength jarray (argType array)
                    line $ "Just " <> jarray <> " -> " <> al)

-- Check that the given array has a length equal to the given length
-- variable.
checkInArrayLength :: Name -> Arg -> Arg -> Arg -> ExcCodeGen ()
checkInArrayLength n array length previous = do
  let name = lowerName n
      funcName = namespace n <> "." <> name
      lvar = escapedArgName length
      avar = escapedArgName array
      expectedLength = avar <> "_expected_length_"
      pvar = escapedArgName previous
  wrapMaybe array >>= bool
            (do
              al <- computeArrayLength avar (argType array)
              line $ "let " <> expectedLength <> " = " <> al)
            (do
              line $ "let " <> expectedLength <> " = case " <> avar <> " of"
              indent $ indent $ do
                line $ "Nothing -> 0"
                let jarray = "j" <> ucFirst avar
                al <- computeArrayLength jarray (argType array)
                line $ "Just " <> jarray <> " -> " <> al)
  line $ "when (" <> expectedLength <> " /= " <> lvar <> ") $"
  indent $ line $ "error \"" <> funcName <> " : length of '" <> avar <>
             "' does not agree with that of '" <> pvar <> "'.\""

-- | Whether to skip the return value in the generated bindings. The
-- C convention is that functions throwing an error and returning
-- a gboolean set the boolean to TRUE iff there is no error, so
-- the information is always implicit in whether we emit an
-- exception or not, so the return value can be omitted from the
-- generated bindings without loss of information (and omitting it
-- gives rise to a nicer API). See
-- https://bugzilla.gnome.org/show_bug.cgi?id=649657
skipRetVal :: Callable -> Bool
skipRetVal callable = (skipReturn callable) ||
                      (callableThrows callable &&
                        returnType callable == Just (TBasicType TBoolean))

freeInArgs' :: (Arg -> Text -> Text -> ExcCodeGen [Text]) ->
               Callable -> Map.Map Text Text -> ExcCodeGen [Text]
freeInArgs' freeFn callable nameMap = concat <$> actions
    where
      actions :: ExcCodeGen [[Text]]
      actions = forM (args callable) $ \arg ->
        case Map.lookup (escapedArgName arg) nameMap of
          Just name -> freeFn arg name $
                       -- Pass in the length argument in case it's needed.
                       case argType arg of
                         TCArray False (-1) (-1) _ ->
                           parenthesize ("length " <> escapedArgName arg)
                         TCArray False (-1) length _ ->
                             escapedArgName $ (args callable)!!length
                         _ -> undefined
          Nothing -> badIntroError $ "freeInArgs: do not understand " <> tshow arg

-- | Return the list of actions freeing the memory associated with the
-- callable variables. This is run if the call to the C function
-- succeeds, if there is an error freeInArgsOnError below is called
-- instead.
freeInArgs :: Callable -> Map.Map Text Text -> ExcCodeGen [Text]
freeInArgs = freeInArgs' freeInArg

-- | Return the list of actions freeing the memory associated with the
-- callable variables. This is run in case there is an error during
-- the call.
freeInArgsOnError :: Callable -> Map.Map Text Text -> ExcCodeGen [Text]
freeInArgsOnError = freeInArgs' freeInArgOnError

-- Marshall the haskell arguments into their corresponding C
-- equivalents. omitted gives a list of DirectionIn arguments that
-- should be ignored, as they will be dealt with separately.
prepareArgForCall :: [Arg] -> Arg -> ExposeClosures -> ExcCodeGen Text
prepareArgForCall omitted arg expose = do
  callback <- findAPI (argType arg) >>=
                \case Just (APICallback c) -> return (Just c)
                      _ -> return Nothing

  when (isJust callback && direction arg /= DirectionIn) $
       notImplementedError "Only callbacks with DirectionIn are supported"

  case direction arg of
    DirectionIn -> if arg `elem` omitted
                   then return . escapedArgName $ arg
                   else case callback of
                        Just c -> if callableThrows (cbCallable c)
                                  -- See [Note: Callables that throw]
                                  then return (escapedArgName arg)
                                  else prepareInCallback arg c expose
                        Nothing -> prepareInArg arg
    DirectionInout -> prepareInoutArg arg
    DirectionOut -> prepareOutArg arg

prepareInArg :: Arg -> ExcCodeGen Text
prepareInArg arg = do
  let name = escapedArgName arg
  wrapMaybe arg >>= bool
            (convert name $ hToF (argType arg) (transfer arg))
            (do
              let maybeName = "maybe" <> ucFirst name
              nullPtr <- nullPtrForType (argType arg) >>= \case
                Nothing -> terror $ "Unexpected non-pointer type " <> tshow (argType arg)
                Just null -> pure null
              line $ maybeName <> " <- case " <> name <> " of"
              indent $ do
                line $ "Nothing -> return " <> nullPtr
                let jName = "j" <> ucFirst name
                line $ "Just " <> jName <> " -> do"
                indent $ do
                         converted <- convert jName $ hToF (argType arg)
                                                           (transfer arg)
                         line $ "return " <> converted
                return maybeName)

-- | Callbacks are a fairly special case, we treat them separately.
prepareInCallback :: Arg -> Callback -> ExposeClosures -> CodeGen e Text
prepareInCallback arg callback@(Callback {cbCallable = cb}) expose = do
  let name = escapedArgName arg
      ptrName = "ptr" <> name
      scope = argScope arg

  (maker, wrapper, drop) <-
      case argType arg of
        TInterface tn ->
            do
              let Name _ n = normalizedAPIName (APICallback callback) tn
              drop <- if callableHasClosures cb && expose == WithoutClosures
                      then Just <$> qualifiedSymbol (callbackDropClosures n) tn
                      else return Nothing
              wrapper <- qualifiedSymbol (callbackHaskellToForeign n) tn
              maker <- qualifiedSymbol (callbackWrapperAllocator n) tn
              return (maker, wrapper, drop)
        _ -> terror $ "prepareInCallback : Not an interface! " <> T.pack (ppShow arg)

  wrapMaybe arg >>= bool
            (do
              let name' = prime name
                  dropped =
                      case drop of
                        Just dropper -> parenthesize (dropper <> " " <> name)
                        Nothing -> name
              -- ScopeTypeAsync callbacks are somewhat tricky: they
              -- will be called only once, and the data associated to
              -- them will be invalid after the first call.
              --
              -- So we pass them a pointer to a dynamically allocated
              -- `Ptr FunPtr`, which contains a pointer to the
              -- `FunPtr` we dynamically allocate wrapping the Haskell
              -- function. On first invocation, the wrapper will then
              -- free this memory.
              p <- if (scope == ScopeTypeAsync)
                   then do ft <- typeShow <$> foreignType (argType arg)
                           line $ ptrName <> " <- callocMem :: IO (Ptr (" <> ft <> "))"
                           return $ parenthesize $ "Just " <> ptrName
                   else return "Nothing"

              line $ name' <> " <- " <> maker <> " "
                       <> parenthesize (wrapper <> " " <> p <> " " <> dropped)
              when (scope == ScopeTypeAsync) $
                   line $ "poke " <> ptrName <> " " <> name'
              return name')
            (do
              let maybeName = "maybe" <> ucFirst name
              line $ maybeName <> " <- case " <> name <> " of"
              indent $ do
                line $ "Nothing -> return FP.nullFunPtr"
                let jName = "j" <> ucFirst name
                    jName' = prime jName
                line $ "Just " <> jName <> " -> do"
                indent $ do
                         let dropped = case drop of
                                   Just dropper ->
                                       parenthesize (dropper <> " " <> jName)
                                   Nothing -> jName
                         p <- if (scope == ScopeTypeAsync)
                           then do ft <- typeShow <$> foreignType (argType arg)
                                   line $ ptrName <> " <- callocMem :: IO (Ptr (" <> ft <> "))"
                                   return $ parenthesize $ "Just " <> ptrName
                           else return "Nothing"

                         line $ jName' <> " <- " <> maker <> " "
                                  <> parenthesize (wrapper <> " "
                                                   <> p <> " " <> dropped)
                         when (scope == ScopeTypeAsync) $
                              line $ "poke " <> ptrName <> " " <> jName'
                         line $ "return " <> jName'
              return maybeName)

prepareInoutArg :: Arg -> ExcCodeGen Text
prepareInoutArg arg = do
  name' <- prepareInArg arg
  ft <- foreignType $ argType arg
  allocInfo <- typeAllocInfo (argType arg)
  case allocInfo of
    Just (TypeAlloc allocator n) -> do
         wrapMaybe arg >>= bool
            (do
              name'' <- genConversion (prime name') $
                        literal $ M $ allocator <>
                                    " :: " <> typeShow (io ft)
              line $ "memcpy " <> name'' <> " " <> name' <> " " <> tshow n
              return name'')
             -- The semantics of this case are somewhat undefined.
            (notImplementedError "Nullable inout structs not supported")
    Nothing -> do
      if argCallerAllocates arg
      then return name'
      else do
        name'' <- genConversion (prime name') $
                  literal $ M $ "allocMem :: " <> typeShow (io $ ptr ft)
        line $ "poke " <> name'' <> " " <> name'
        return name''

prepareOutArg :: Arg -> ExcCodeGen Text
prepareOutArg arg = do
  let name = escapedArgName arg
  ft <- foreignType $ argType arg
  if argCallerAllocates arg
  then do
    allocInfo <- typeAllocInfo (argType arg)
    case allocInfo of
      Just (TypeAlloc allocator _) -> do
          genConversion name $ literal $ M $ allocator <>
                            " :: " <> typeShow (io ft)
      Nothing ->
          notImplementedError $ ("Don't know how to allocate \""
                                 <> argCName arg <> "\" of type "
                                 <> tshow (argType arg))
  else do
    -- Initialize pointers to NULL to avoid a crash in case the function
    -- does not initialize it.
    isPtr <- typeIsPtr (argType arg)
    let alloc = if isPtr
                then "callocMem"
                else "allocMem"
    genConversion name $ literal $ M $ alloc <> " :: " <> typeShow (io $ ptr ft)

-- Convert a non-zero terminated out array, stored in a variable
-- named "aname", into the corresponding Haskell object.
convertOutCArray :: Callable -> Type -> Text -> Map.Map Text Text ->
                    Transfer -> (Text -> Text) -> ExcCodeGen Text
convertOutCArray callable t@(TCArray False fixed length _) aname
                 nameMap transfer primeLength = do
  if fixed > -1
  then do
    unpacked <- convert aname $ unpackCArray (tshow fixed) t transfer
    -- Free the memory associated with the array.
    freeContainerType transfer t aname undefined
    return unpacked
  else do
    when (length == -1) $
         badIntroError $ "Unknown length for \"" <> aname <> "\""
    let lname = escapedArgName $ (args callable)!!length
    lname' <- case Map.lookup lname nameMap of
                Just n -> return n
                Nothing ->
                    badIntroError $ "Couldn't find out array length " <>
                                            lname
    let lname'' = primeLength lname'
    unpacked <- convert aname $ unpackCArray lname'' t transfer
    -- Free the memory associated with the array.
    freeContainerType transfer t aname lname''
    return unpacked

-- Remove the warning, this should never be reached.
convertOutCArray _ t _ _ _ _ =
    terror $ "convertOutCArray : unexpected " <> tshow t

-- Read the array lengths for out arguments.
readOutArrayLengths :: Callable -> Map.Map Text Text -> ExcCodeGen ()
readOutArrayLengths callable nameMap = do
  let lNames = nub $ map escapedArgName $
               filter ((/= DirectionIn) . direction) $
               arrayLengths callable
  forM_ lNames $ \lname -> do
    lname' <- case Map.lookup lname nameMap of
                   Just n -> return n
                   Nothing ->
                       badIntroError $ "Couldn't find out array length " <>
                                               lname
    genConversion lname' $ apply $ M "peek"

-- Touch DirectionIn arguments so we are sure that they exist when the
-- C function was called.
touchInArg :: Arg -> ExcCodeGen ()
touchInArg arg = when (direction arg /= DirectionOut) $ do
  let name = escapedArgName arg
  case elementType (argType arg) of
    Just a -> do
      managed <- isManaged a
      when managed $ wrapMaybe arg >>= bool
              (line $ "mapM_ touchManagedPtr " <> name)
              (line $ "whenJust " <> name <> " (mapM_ touchManagedPtr)")
    Nothing -> do
      managed <- isManaged (argType arg)
      when managed $ wrapMaybe arg >>= bool
           (line $ "touchManagedPtr " <> name)
           (line $ "whenJust " <> name <> " touchManagedPtr")

-- Find the association between closure arguments and their
-- corresponding callback.
closureToCallbackMap :: Callable -> ExcCodeGen (Map.Map Int Arg)
closureToCallbackMap callable =
    -- The introspection info does not specify the closure for destroy
    -- notify's associated with a callback, since it is implicitly the
    -- same one as the ScopeTypeNotify callback associated with the
    -- DestroyNotify.
    go (filter (not . (`elem` destroyers)) $ args callable) Map.empty

    where destroyers = map (args callable!!) . filter (/= -1) . map argDestroy
                       $ args callable

          go :: [Arg] -> Map.Map Int Arg -> ExcCodeGen (Map.Map Int Arg)
          go [] m = return m
          go (arg:as) m =
              if argScope arg == ScopeTypeInvalid
              then go as m
              else case argClosure arg of
                  (-1) -> go as m
                  c -> case Map.lookup c m of
                      Just _ -> notImplementedError $
                                "Closure for multiple callbacks unsupported"
                                <> T.pack (ppShow arg) <> "\n"
                                <> T.pack (ppShow callable)
                      Nothing -> go as $ Map.insert c arg m

-- user_data style arguments.
prepareClosures :: Callable -> Map.Map Text Text -> ExcCodeGen ()
prepareClosures callable nameMap = do
  m <- closureToCallbackMap callable
  let closures = filter (/= -1) . map argClosure $ args callable
  forM_ closures $ \closure ->
      case Map.lookup closure m of
        Nothing -> badIntroError $ "Closure not found! "
                                <> "\nClosure: " <> tshow closure
                                <> "\nc2cm: " <> T.pack (ppShow m)
                                <> "\ncallable: " <> T.pack (ppShow callable)
        Just cb -> do
          let closureName = escapedArgName $ (args callable)!!closure
              n = escapedArgName cb
          n' <- case Map.lookup n nameMap of
                  Just n -> return n
                  Nothing -> badIntroError $ "Cannot find closure name!! "
                                           <> T.pack (ppShow callable) <> "\n"
                                           <> T.pack (ppShow nameMap)
          -- Check that the given closure is an actual callback type.
          maybeAPI <- findAPI (argType cb)
          case maybeAPI of
            Just (APICallback _) -> do
              case argScope cb of
                ScopeTypeInvalid -> badIntroError $ "Invalid scope! "
                                              <> T.pack (ppShow callable)
                ScopeTypeNotified -> do
                  line $ "let " <> closureName <> " = castFunPtrToPtr " <> n'
                  case argDestroy cb of
                    (-1) -> badIntroError $
                            "ScopeTypeNotified without destructor! "
                            <> T.pack (ppShow callable)
                    k -> do
                      let destroyArg = (args callable)!!k
                          destroyName = escapedArgName destroyArg
                      destroyFun <- case argType destroyArg of
                        TInterface (Name "GLib" "DestroyNotify") ->
                          return "SP.safeFreeFunPtrPtr"
                        TInterface (Name "GObject" "ClosureNotify") ->
                          return "SP.safeFreeFunPtrPtr'"
                        _ -> notImplementedError $ "Unknown destroy type: " <> tshow (argType destroyArg)
                      line $ "let " <> destroyName <> " = " <> destroyFun
                ScopeTypeAsync -> do
                  line $ "let " <> closureName <> " = nullPtr"
                  case argDestroy cb of
                    -- Async callbacks don't really need destroy
                    -- notifications, as they can always be released
                    -- at the end of the callback.
                    (-1) -> return ()
                    n -> let destroyName = escapedArgName $ (args callable)!!n
                         in line $ "let " <> destroyName <> " = FP.nullFunPtr"
                ScopeTypeCall -> line $ "let " <> closureName <> " = nullPtr"
                ScopeTypeForever -> line $ "let " <> closureName <> " = nullPtr"
            _ -> badIntroError $ "Closure \"" <> n <> "\" is not a callback."

freeCallCallbacks :: Callable -> Map.Map Text Text -> ExcCodeGen ()
freeCallCallbacks callable nameMap =
    forM_ (args callable) $ \arg -> do
       let name = escapedArgName arg
       name' <- case Map.lookup name nameMap of
                  Just n -> return n
                  Nothing -> badIntroError $ "Could not find " <> name
                                <> " in " <> T.pack (ppShow callable) <> "\n"
                                <> T.pack (ppShow nameMap)
       when (argScope arg == ScopeTypeCall) $ do
         isCallback <- typeIsCallback (argType arg)
         if isCallback
           then line $ "safeFreeFunPtr $ castFunPtrToPtr " <> name'
           else comment $ "XXX: Ignoring scope annotation on a non-callback argument: " <> name

-- | Format the signature of the Haskell binding for the `Callable`.
formatHSignature :: Callable -> ForeignSymbol -> ExposeClosures -> ExcCodeGen ()
formatHSignature callable symbol expose = do
  sig <- callableSignature callable symbol expose
  indent $ do
      let constraints = "B.CallStack.HasCallStack" : signatureConstraints sig
      line $ "(" <> T.intercalate ", " constraints <> ") =>"
      forM_ (zip ("" : repeat "-> ") (signatureArgTypes sig)) $
        \(prefix, (maybeArg, t)) -> do
          line $ prefix <> t
          case maybeArg of
            Nothing -> return ()
            Just arg -> writeArgDocumentation arg
      let resultPrefix = if null (signatureArgTypes sig)
                         then ""
                         else "-> "
      line $ resultPrefix <> signatureReturnType sig
      writeReturnDocumentation (signatureCallable sig) (skipRetVal callable)

-- | Name for the first argument in dynamic wrappers (the `FunPtr`).
funPtr :: Text
funPtr = "__funPtr"

-- | Signature for a callable.
data Signature = Signature { signatureCallable    :: Callable
                           , signatureConstraints :: [Text]
                           , signatureArgTypes    :: [(Maybe Arg, Text)]
                           , signatureReturnType  :: Text
                           }

-- | The Haskell signature for the given callable. It returns a tuple
-- ([constraints], [(type, argname)]).
callableSignature :: Callable -> ForeignSymbol -> ExposeClosures
                  -> ExcCodeGen Signature
callableSignature callable symbol expose = do
  let (hInArgs, _) = callableHInArgs callable
                                    (case symbol of
                                       KnownForeignSymbol _ -> WithoutClosures
                                       DynamicForeignSymbol _ -> WithClosures)
  (argConstraints, types) <- inArgInterfaces hInArgs expose
  let constraints = ("MonadIO m" : argConstraints)
  outType <- hOutType callable (callableHOutArgs callable)
  return $ Signature {
      signatureCallable = callable,
      signatureConstraints = constraints,
      signatureReturnType = typeShow ("m" `con` [outType]),
      signatureArgTypes = case symbol of
          KnownForeignSymbol _ -> zip (map Just hInArgs) types
          DynamicForeignSymbol w -> zip (Nothing : map Just hInArgs)
                                    ("FunPtr " <> dynamicType w : types)
      }

-- | "In" arguments for the given callable on the Haskell side,
-- together with the omitted arguments.
callableHInArgs :: Callable -> ExposeClosures -> ([Arg], [Arg])
callableHInArgs callable expose =
    let inArgs = filter ((/= DirectionOut) . direction) $ args callable
                 -- We do not expose user_data arguments,
                 -- destroynotify arguments, and C array length
                 -- arguments to Haskell code.
        closures = map (args callable!!) . filter (/= -1) . map argClosure $ inArgs
        destroyers = map (args callable!!) . filter (/= -1) . map argDestroy $ inArgs
        callbackUserData = filter argCallbackUserData (args callable)
        omitted = case expose of
                    WithoutClosures -> arrayLengths callable <> closures <> destroyers <> callbackUserData
                    WithClosures -> arrayLengths callable
    in (filter (`notElem` omitted) inArgs, omitted)

-- | "Out" arguments for the given callable on the Haskell side.
callableHOutArgs :: Callable -> [Arg]
callableHOutArgs callable =
    let outArgs = filter ((/= DirectionIn) . direction) $ args callable
    in filter (`notElem` (arrayLengths callable)) outArgs

-- | Convert the result of the foreign call to Haskell.
convertResult :: Name -> Callable -> Map.Map Text Text ->
                 ExcCodeGen Text
convertResult n callable nameMap =
    if skipRetVal callable || returnType callable == Nothing
    then return (error "convertResult: unreachable code reached, bug!")
    else do
      nullableReturnType <- maybe (return False) typeIsNullable (returnType callable)
      if returnMayBeNull callable && nullableReturnType
      then do
        line $ "maybeResult <- convertIfNonNull result $ \\result' -> do"
        indent $ do
             converted <- unwrappedConvertResult "result'"
             line $ "return " <> converted
             return "maybeResult"
      else do
        when nullableReturnType $
             line $ "checkUnexpectedReturnNULL \"" <> lowerName n
                      <> "\" result"
        unwrappedConvertResult "result"

    where
      unwrappedConvertResult rname =
          case returnType callable of
            -- Arrays without length information cannot be converted
            -- into Haskell values.
            Just (t@(TCArray False (-1) (-1) _)) ->
                badIntroError ("`" <> tshow t <>
                "' is an array type, but contains no length information,\n"
                <> "so it cannot be unpacked.")
            -- Not zero-terminated C arrays require knowledge of the
            -- length, so we deal with them directly.
            Just (t@(TCArray False _ _ _)) ->
                convertOutCArray callable t rname nameMap
                                 (returnTransfer callable) prime
            Just t -> do
                result <- convert rname $ fToH t (returnTransfer callable)
                freeContainerType (returnTransfer callable) t rname undefined
                return result
            Nothing -> return (error "unwrappedConvertResult: bug!")

-- | Marshal a foreign out argument to Haskell, returning the name of
-- the variable containing the converted Haskell value.
convertOutArg :: Callable -> Map.Map Text Text -> Arg -> ExcCodeGen Text
convertOutArg callable nameMap arg = do
  let name = escapedArgName arg
  inName <- case Map.lookup name nameMap of
      Just name' -> return name'
      Nothing -> badIntroError $ "Parameter " <> name <> " not found!"
  case argType arg of
      t@(TCArray False (-1) (-1) _) ->
          if argCallerAllocates arg
          then return inName
          else  badIntroError ("`" <> tshow t <>
                "' is an array type, but contains no length information,\n"
                <> "so it cannot be unpacked.")
      t@(TCArray False _ _ _) -> do
          aname' <- if argCallerAllocates arg
                    then return inName
                    else genConversion inName $ apply $ M "peek"
          let arrayLength = if argCallerAllocates arg
                            then id
                            else prime
              wrapArray a = convertOutCArray callable t a
                                nameMap (transfer arg) arrayLength
          wrapMaybe arg >>= bool
                 (wrapArray aname')
                 (do line $ "maybe" <> ucFirst aname'
                         <> " <- convertIfNonNull " <> aname'
                         <> " $ \\" <> prime aname' <> " -> do"
                     indent $ do
                         wrapped <- wrapArray (prime aname')
                         line $ "return " <> wrapped
                     return $ "maybe" <> ucFirst aname')
      t -> do
          peeked <- if argCallerAllocates arg
                   then return inName
                   else genConversion inName $ apply $ M "peek"
          -- If we alloc we always take control of the resulting
          -- memory, otherwise we may leak.
          let transfer' = if argCallerAllocates arg
                         then TransferEverything
                         else transfer arg
          result <- do
              let wrap ptr = convert ptr $ fToH (argType arg) transfer'
              wrapMaybe arg >>= bool
                  (wrap peeked)
                  (do line $ "maybe" <> ucFirst peeked
                          <> " <- convertIfNonNull " <> peeked
                          <> " $ \\" <> prime peeked <> " -> do"
                      indent $ do
                          wrapped <- wrap (prime peeked)
                          line $ "return " <> wrapped
                      return $ "maybe" <> ucFirst peeked)
          -- Free the memory associated with the out argument
          freeContainerType transfer' t peeked undefined
          return result

-- | Convert the list of out arguments to Haskell, returning the
-- names of the corresponding variables containing the marshaled values.
convertOutArgs :: Callable -> Map.Map Text Text -> [Arg] -> ExcCodeGen [Text]
convertOutArgs callable nameMap hOutArgs =
    forM hOutArgs (convertOutArg callable nameMap)

-- | Invoke the given C function, taking care of errors.
invokeCFunction :: Callable -> ForeignSymbol -> [Text] -> CodeGen e ()
invokeCFunction callable symbol argNames = do
  let returnBind = case returnType callable of
                     Nothing -> ""
                     _       -> if skipRetVal callable
                                then "_ <- "
                                else "result <- "
      maybeCatchGErrors = if callableThrows callable
                          then "propagateGError $ "
                          else ""
      call = case symbol of
               KnownForeignSymbol s -> s
               DynamicForeignSymbol w -> parenthesize (dynamicWrapper w
                                                      <> " " <> funPtr)
  line $ returnBind <> maybeCatchGErrors
           <> call <> (T.concat . map (" " <>)) argNames

-- | Return the result of the call, possibly including out arguments.
returnResult :: Callable -> Text -> [Text] -> CodeGen e ()
returnResult callable result pps =
    if skipRetVal callable || returnType callable == Nothing
    then case pps of
        []      -> line "return ()"
        (pp:[]) -> line $ "return " <> pp
        _       -> line $ "return (" <> T.intercalate ", " pps <> ")"
    else case pps of
        [] -> line $ "return " <> result
        _  -> line $ "return (" <> T.intercalate ", " (result : pps) <> ")"

-- | Generate a Haskell wrapper for the given foreign function.
genHaskellWrapper :: Name -> ForeignSymbol -> Callable ->
                     ExposeClosures -> ExcCodeGen Text
genHaskellWrapper n symbol callable expose = group $ do
    let name = case symbol of
                 KnownForeignSymbol _ -> lowerName n
                 DynamicForeignSymbol _ -> callbackDynamicWrapper (upperName n)
        (hInArgs, omitted) = callableHInArgs callable expose
        hOutArgs = callableHOutArgs callable

    line $ name <> " ::"
    formatHSignature callable symbol expose
    let argNames = case symbol of
                     KnownForeignSymbol _ -> map escapedArgName hInArgs
                     DynamicForeignSymbol _ ->
                         funPtr : map escapedArgName hInArgs
    line $ name <> " " <> T.intercalate " " argNames <> " = liftIO $ do"
    indent (genWrapperBody n symbol callable hInArgs hOutArgs omitted expose)
    return name

-- | Generate the body of the Haskell wrapper for the given foreign symbol.
genWrapperBody :: Name -> ForeignSymbol -> Callable ->
                  [Arg] -> [Arg] -> [Arg] ->
                  ExposeClosures ->
                  ExcCodeGen ()
genWrapperBody n symbol callable hInArgs hOutArgs omitted expose = do
    readInArrayLengths n callable hInArgs
    inArgNames <- forM (args callable) $ \arg ->
                  prepareArgForCall omitted arg expose
    -- Map from argument names to names passed to the C function
    let nameMap = Map.fromList $ flip zip inArgNames
                               $ map escapedArgName $ args callable
    prepareClosures callable nameMap
    if callableThrows callable
    then do
        line "onException (do"
        indent $ do
            invokeCFunction callable symbol inArgNames
            readOutArrayLengths callable nameMap
            result <- convertResult n callable nameMap
            pps <- convertOutArgs callable nameMap hOutArgs
            freeCallCallbacks callable nameMap
            forM_ (args callable) touchInArg
            mapM_ line =<< freeInArgs callable nameMap
            returnResult callable result pps
        line " ) (do"
        indent $ do
            freeCallCallbacks callable nameMap
            actions <- freeInArgsOnError callable nameMap
            case actions of
                [] -> line $ "return ()"
                _ -> mapM_ line actions
        line " )"
    else do
        invokeCFunction callable symbol inArgNames
        readOutArrayLengths callable nameMap
        result <- convertResult n callable nameMap
        pps <- convertOutArgs callable nameMap hOutArgs
        freeCallCallbacks callable nameMap
        forM_ (args callable) touchInArg
        mapM_ line =<< freeInArgs callable nameMap
        returnResult callable result pps

-- | caller-allocates arguments are arguments that the caller
-- allocates, and the called function modifies. They are marked as
-- 'out' argumens in the introspection data, we sometimes treat them
-- as 'inout' arguments instead. The semantics are somewhat tricky:
-- for memory management purposes they should be treated as "in"
-- arguments, but from the point of view of the exposed API they
-- should be treated as "out" or "inout". Unfortunately we cannot
-- always just assume that they are purely "out", so in many cases the
-- generated API is somewhat suboptimal (since the initial values are
-- not important): for example for g_io_channel_read_chars the size of
-- the buffer to read is determined by the caller-allocates
-- argument. As a compromise, we assume that we can allocate anything
-- that is not a TCArray of length determined by an argument.
fixupCallerAllocates :: Callable -> Callable
fixupCallerAllocates c =
    c{args = map (fixupLength . fixupDir) (args c)}
    where fixupDir :: Arg -> Arg
          fixupDir a = case argType a of
                         TCArray _ _ l _ ->
                             if argCallerAllocates a && l > -1
                             then a { direction = DirectionInout
                                    , transfer = TransferEverything }
                             else a
                         _ -> a

          lengthsMap :: Map.Map Arg Arg
          lengthsMap = Map.fromList (map swap (arrayLengthsMap c))

          -- Length arguments of caller-allocates arguments should be
          -- treated as "in".
          fixupLength :: Arg -> Arg
          fixupLength a = case Map.lookup a lengthsMap of
                            Nothing -> a
                            Just array ->
                                if argCallerAllocates array
                                then a {direction = DirectionIn}
                                else a

-- | The foreign symbol to wrap. It is either a foreign symbol wrapped
-- in a foreign import, in which case we are given the name of the
-- Haskell wrapper, or alternatively the information about a "dynamic"
-- wrapper in scope.
data ForeignSymbol = KnownForeignSymbol Text -- ^ Haskell symbol in scope.
                   | DynamicForeignSymbol DynamicWrapper
                     -- ^ Info about the dynamic wrapper.

-- | Information about a dynamic wrapper.
data DynamicWrapper = DynamicWrapper {
      dynamicWrapper :: Text    -- ^ Haskell dynamic wrapper
    , dynamicType    :: Text    -- ^ Name of the type synonym for the
                                -- type of the function to be wrapped.
    }

-- | Some debug info for the callable.
genCallableDebugInfo :: Callable -> CodeGen e ()
genCallableDebugInfo callable =
    group $ do
      commentShow "Args" (args callable)
      commentShow "Lengths" (arrayLengths callable)
      commentShow "returnType" (returnType callable)
      line $ "-- throws : " <> (tshow $ callableThrows callable)
      line $ "-- Skip return : " <> (tshow $ skipReturn callable)
      when (skipReturn callable && returnType callable /= Just (TBasicType TBoolean)) $
           do line "-- XXX return value ignored, but it is not a boolean."
              line "--     This may be a memory leak?"
  where commentShow :: Show a => Text -> a -> CodeGen e ()
        commentShow prefix s =
          let padding = T.replicate (T.length prefix + 2) " "
              padded = case T.lines (T.pack $ ppShow s) of
                         [] -> []
                         (f:rest) -> "-- " <> prefix <> ": " <> f :
                                     map (("-- " <> padding) <>) rest
          in mapM_ line padded

-- | Generate a wrapper for a known C symbol.
genCCallableWrapper :: Name -> Text -> Callable -> ExcCodeGen ()
genCCallableWrapper n cSymbol callable
  | callableResolvable callable == Nothing =
      -- If we reach this point there is some internal error.
      terror ("Resolvability of “" <> cSymbol <> "” unkown.")
  | callableResolvable callable == Just False =
      badIntroError ("Could not resolve the symbol “" <> cSymbol
                     <> "” in the “" <> namespace n
                     <> "” namespace, ignoring.")
  | otherwise = do
      genCallableDebugInfo callable

      let callable' = fixupCallerAllocates callable

      hSymbol <- mkForeignImport cSymbol callable'

      blank

      deprecatedPragma (lowerName n) (callableDeprecated callable)
      writeDocumentation DocBeforeSymbol (callableDocumentation callable)
      void (genHaskellWrapper n (KnownForeignSymbol hSymbol) callable'
            WithoutClosures)

-- | For callbacks we do not need to keep track of which arguments are
-- closures.
forgetClosures :: Callable -> Callable
forgetClosures c = c {args = map forgetClosure (args c)}
    where forgetClosure :: Arg -> Arg
          forgetClosure arg = arg {argClosure = -1,
                                   argCallbackUserData = False}

-- | Generate a wrapper for a dynamic C symbol (i.e. a Haskell
-- function that will invoke its first argument, which should be a
-- `FunPtr` of the appropriate type). The caller should have created a
-- type synonym with the right type for the foreign symbol.
genDynamicCallableWrapper :: Name -> Text -> Callable ->
                             ExcCodeGen Text
genDynamicCallableWrapper n typeSynonym callable = do
  genCallableDebugInfo callable

  let callable' = forgetClosures (fixupCallerAllocates callable)

  wrapper <- mkDynamicImport typeSynonym

  blank

  writeHaddock DocBeforeSymbol dynamicDoc

  let dyn = DynamicWrapper { dynamicWrapper = wrapper
                           , dynamicType    = typeSynonym }
  genHaskellWrapper n (DynamicForeignSymbol dyn) callable' WithClosures

  where
    dynamicDoc :: Text
    dynamicDoc = "Given a pointer to a foreign C function, wrap it into a function callable from Haskell."