1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
|
{-# LANGUAGE FlexibleContexts, UndecidableInstances #-}
--------------------------------------------------------------------
-- |
-- Module : Text.XML.Expat.Cursor
--
-- This module ported from Text.XML.Light.Cursor
--
-- XML cursors for working XML content withing the context of
-- an XML document. This implementation is based on the general
-- tree zipper written by Krasimir Angelov and Iavor S. Diatchki.
--
-- With the exception of 'modifyContentM', then M-suffixed functions are
-- for use with monadic node types, as used when dealing with chunked I\/O
-- with the /hexpat-iteratee/ package. In the more common pure case, you
-- wouldn't need these *M functions.
module Text.XML.Expat.Cursor
(
-- * Types
Cursor, CursorG(..), Path, PathG
, Tag(..), getTag, fromTag
-- * Conversions
, fromTree
, fromForest
, toForest
, toTree
-- * Moving around
, parent
, root
, getChild
, getChildM
, firstChild
, firstChildM
, lastChild
, lastChildM
, left
, leftM
, right
, rightM
, nextDF
, nextDFM
-- ** Searching
, findChild
, findLeft
, findRight
, findRec
, findRecM
-- * Node classification
, isRoot
, isFirst
, isFirstM
, isLast
, isLastM
, isLeaf
, isChild
, hasChildren
, getNodeIndex
-- * Updates
, setContent
, modifyContent
, modifyContentList
, modifyContentListM
, modifyContentM
-- ** Inserting content
, insertLeft
, insertRight
, insertManyLeft
, insertManyRight
, insertFirstChild
, insertLastChild
, insertManyFirstChild
, insertManyLastChild
, insertGoLeft
, insertGoRight
-- ** Removing content
, removeLeft
, removeLeftM
, removeRight
, removeRightM
, removeGoLeft
, removeGoLeftM
, removeGoRight
, removeGoRightM
, removeGoUp
) where
import Text.XML.Expat.Tree
import Control.Monad (mzero, mplus)
import Data.Maybe(isNothing)
import Data.Monoid
import Data.Functor.Identity
import Data.List.Class (List(..), ListItem(..), cons, foldlL, lengthL)
data Tag tag text = Tag { tagName :: tag
, tagAttribs :: Attributes tag text
} deriving (Show)
{-
setTag :: Tag -> Element -> Element
setTag t e = fromTag t (elContent e)
-}
fromTag :: MkElementClass n c => Tag tag text -> c (n c tag text) -> n c tag text
fromTag t cs = mkElement (tagName t) (tagAttribs t) cs
-- | Generalized path within an XML document.
type PathG n c tag text = [(c (n c tag text),Tag tag text,c (n c tag text))]
-- | A path specific to @Text.XML.Expat.Tree.Node@ trees.
type Path tag text = PathG NodeG [] tag text
-- | Generalized cursor: The position of a piece of content in an XML document.
-- @n@ is the Node type and @c@ is the list type, which would usually be [],
-- except when you're using chunked I\/O.
data CursorG n c tag text = Cur
{ current :: n c tag text -- ^ The currently selected content.
, lefts :: c (n c tag text) -- ^ Siblings on the left, closest first.
, rights :: c (n c tag text) -- ^ Siblings on the right, closest first.
, parents :: PathG n c tag text -- ^ The contexts of the parent elements of this location.
}
instance (Show (n c tag text), Show (c (n c tag text)), Show tag, Show text)
=> Show (CursorG n c tag text) where
show (Cur c l r p) = "Cur { current="++show c++
", lefts="++show l++
", rights="++show r++
", parents="++show p++" }"
-- | A cursor specific to @Text.XML.Expat.Tree.Node@ trees.
type Cursor tag text = CursorG NodeG [] tag text
-- Moving around ---------------------------------------------------------------
-- | The parent of the given location.
parent :: MkElementClass n c => CursorG n c tag text -> Maybe (CursorG n c tag text)
parent loc =
case parents loc of
(pls,v,prs) : ps -> Just
Cur { current = (fromTag v
(combChildren (lefts loc) (current loc) (rights loc)))
, lefts = pls, rights = prs, parents = ps
}
[] -> Nothing
-- | The top-most parent of the given location.
root :: MkElementClass n c => CursorG n c tag text -> CursorG n c tag text
root loc = maybe loc root (parent loc)
-- | The left sibling of the given location - pure version.
left :: CursorG n [] tag text -> Maybe (CursorG n [] tag text)
left loc = runIdentity $ leftM loc
-- | The left sibling of the given location - used for monadic node types.
leftM :: List c => CursorG n c tag text -> ItemM c (Maybe (CursorG n c tag text))
leftM loc = do
let l = lefts loc
li <- runList l
case li of
Nil -> return Nothing
Cons t ts -> return $ Just loc { current = t, lefts = ts
, rights = cons (current loc) (rights loc) }
-- | The right sibling of the given location - pure version.
right :: CursorG n [] tag text -> Maybe (CursorG n [] tag text)
right loc = runIdentity $ rightM loc
-- | The right sibling of the given location - used for monadic node types.
rightM :: List c => CursorG n c tag text -> ItemM c (Maybe (CursorG n c tag text))
rightM loc = do
let r = rights loc
li <- runList r
case li of
Nil -> return Nothing
Cons t ts -> return $ Just loc { current = t, lefts = cons (current loc) (lefts loc)
, rights = ts }
-- | The first child of the given location - pure version.
firstChild :: (NodeClass n [], Monoid tag) => CursorG n [] tag text -> Maybe (CursorG n [] tag text)
firstChild loc = runIdentity $ firstChildM loc
-- | The first child of the given location - used for monadic node types.
firstChildM :: (NodeClass n c, Monoid tag) => CursorG n c tag text -> ItemM c (Maybe (CursorG n c tag text))
firstChildM loc = do
case downParents loc of
Just (l, ps) -> do
li <- runList l
return $ case li of
Cons t ts -> Just $ Cur { current = t, lefts = mzero, rights = ts , parents = ps }
Nil -> Nothing
Nothing -> return $ Nothing
-- | The last child of the given location - pure version.
lastChild :: (NodeClass n [], Monoid tag) => CursorG n [] tag text -> Maybe (CursorG n [] tag text)
lastChild loc = runIdentity $ lastChildM loc
-- | The last child of the given location - used for monadic node types.
lastChildM :: (NodeClass n c, Monoid tag) => CursorG n c tag text -> ItemM c (Maybe (CursorG n c tag text))
lastChildM loc = do
case downParents loc of
Just (l, ps) -> do
li <- runList (reverseL l)
return $ case li of
Cons t ts -> Just $ Cur { current = t, lefts = ts, rights = mzero , parents = ps }
Nil -> Nothing
Nothing -> return $ Nothing
-- | Find the next left sibling that satisfies a predicate.
findLeft :: NodeClass n [] =>
(CursorG n [] tag text -> Bool)
-> CursorG n [] tag text
-> Maybe (CursorG n [] tag text)
findLeft p loc = runIdentity (findLeftM p loc)
-- | Find the next left sibling that satisfies a predicate.
findLeftM :: NodeClass n c =>
(CursorG n c tag text -> Bool)
-> CursorG n c tag text
-> ItemM c (Maybe (CursorG n c tag text))
findLeftM p loc = do
mLoc1 <- leftM loc
case mLoc1 of
Just loc1 -> if p loc1 then return (Just loc1) else findLeftM p loc1
Nothing -> return Nothing
-- | Find the next right sibling that satisfies a predicate - pure version.
findRight :: (CursorG n [] tag text -> Bool)
-> CursorG n [] tag text
-> Maybe (CursorG n [] tag text)
findRight p loc = runIdentity $ findRightM p loc
-- | Find the next right sibling that satisfies a predicate - used for monadic node types.
findRightM :: List c =>
(CursorG n c tag text -> Bool)
-> CursorG n c tag text
-> ItemM c (Maybe (CursorG n c tag text))
findRightM p loc = do
mLoc1 <- rightM loc
case mLoc1 of
Just loc1 -> if p loc1 then return $ Just loc1 else findRightM p loc1
Nothing -> return Nothing
-- | The first child that satisfies a predicate - pure version.
findChild :: (NodeClass n [], Monoid tag) =>
(CursorG n [] tag text -> Bool)
-> CursorG n [] tag text
-> Maybe (CursorG n [] tag text)
findChild p loc = runIdentity $ findChildM p loc
-- | The first child that satisfies a predicate - used for monadic node types.
findChildM :: (NodeClass n c, Monoid tag) =>
(CursorG n c tag text -> Bool)
-> CursorG n c tag text
-> ItemM c (Maybe (CursorG n c tag text))
findChildM p loc = do
mLoc1 <- firstChildM loc
case mLoc1 of
Just loc1 -> if p loc1 then return $ Just loc1 else findRightM p loc1
Nothing -> return Nothing
-- | The next position in a left-to-right depth-first traversal of a document:
-- either the first child, right sibling, or the right sibling of a parent that
-- has one. Pure version.
nextDF :: (MkElementClass n [], Monoid tag) => CursorG n [] tag text -> Maybe (CursorG n [] tag text)
nextDF c = runIdentity $ nextDFM c
-- | The next position in a left-to-right depth-first traversal of a document:
-- either the first child, right sibling, or the right sibling of a parent that
-- has one. Used for monadic node types.
nextDFM :: (MkElementClass n c, Monoid tag) => CursorG n c tag text -> ItemM c (Maybe (CursorG n c tag text))
nextDFM c = do
mFirst <- firstChildM c
case mFirst of
Just c' -> return $ Just c'
Nothing -> up c
where
up x = do
mRight <- rightM x
case mRight of
Just c' -> return $ Just c'
Nothing ->
case parent x of
Just p -> up p
Nothing -> return Nothing
-- | Perform a depth first search for a descendant that satisfies the
-- given predicate. Pure version.
findRec :: (MkElementClass n [], Monoid tag) =>
(CursorG n [] tag text -> Bool)
-> CursorG n [] tag text
-> Maybe (CursorG n [] tag text)
findRec p c = runIdentity $ findRecM (return . p) c
-- | Perform a depth first search for a descendant that satisfies the
-- given predicate. Used for monadic node types.
findRecM :: (MkElementClass n c, Monoid tag) =>
(CursorG n c tag text -> ItemM c Bool)
-> CursorG n c tag text
-> ItemM c (Maybe (CursorG n c tag text))
findRecM p c = do
found <- p c
if found
then return $ Just c
else do
mC' <- nextDFM c
case mC' of
Just c' -> findRecM p c'
Nothing -> return Nothing
-- | The child with the given index (starting from 0). - pure version.
getChild :: (NodeClass n [], Monoid tag) => Int -> CursorG n [] tag text -> Maybe (CursorG n [] tag text)
getChild n loc = runIdentity $ getChildM n loc
-- | The child with the given index (starting from 0) - used for monadic node types.
getChildM :: (NodeClass n c, Monoid tag) =>
Int
-> CursorG n c tag text
-> ItemM c (Maybe (CursorG n c tag text))
getChildM n loc = do
let mParents = downParents loc
case mParents of
Just (ts, ps) -> do
mSplit <- splitChildrenM ts n
case mSplit of
Just (ls,t,rs) -> return $ Just $
Cur { current = t, lefts = ls, rights = rs, parents = ps }
Nothing -> return Nothing
Nothing -> return Nothing
-- | private: computes the parent for "down" operations.
downParents :: (NodeClass n c, Monoid tag) => CursorG n c tag text -> Maybe (c (n c tag text), PathG n c tag text)
downParents loc =
case current loc of
e | isElement e ->
let n = getName e
a = getAttributes e
c = getChildren e
in Just ( c
, cons (lefts loc, Tag n a, rights loc) (parents loc)
)
_ -> Nothing
getTag :: Node tag text -> Tag tag text
getTag e = Tag { tagName = eName e
, tagAttribs = eAttributes e
}
-- Conversions -----------------------------------------------------------------
-- | A cursor for the given content.
fromTree :: List c => n c tag text -> CursorG n c tag text
fromTree t = Cur { current = t, lefts = mzero, rights = mzero, parents = [] }
-- | The location of the first tree in a forest - pure version.
fromForest :: NodeClass n [] => [n [] tag text] -> Maybe (CursorG n [] tag text)
fromForest l = runIdentity $ fromForestM l
-- | The location of the first tree in a forest - used with monadic node types.
fromForestM :: List c => c (n c tag text) -> ItemM c (Maybe (CursorG n c tag text))
fromForestM l = do
li <- runList l
return $ case li of
Cons t ts -> Just Cur { current = t, lefts = mzero, rights = ts
, parents = [] }
Nil -> Nothing
-- | Computes the tree containing this location.
toTree :: MkElementClass n c => CursorG n c tag text -> n c tag text
toTree loc = current (root loc)
-- | Computes the forest containing this location.
toForest :: MkElementClass n c => CursorG n c tag text -> c (n c tag text)
toForest loc = let r = root loc in combChildren (lefts r) (current r) (rights r)
-- Queries ---------------------------------------------------------------------
-- | Are we at the top of the document?
isRoot :: CursorG n c tag text -> Bool
isRoot loc = null (parents loc)
-- | Are we at the left end of the the document? (Pure version.)
isFirst :: CursorG n [] tag text -> Bool
isFirst loc = runIdentity $ isFirstM loc
-- | Are we at the left end of the the document? (Used for monadic node types.)
isFirstM :: List c => CursorG n c tag text -> ItemM c Bool
isFirstM loc = do
li <- runList (lefts loc)
return $ case li of
Nil -> True
_ -> False
-- | Are we at the right end of the document? (Pure version.)
isLast :: CursorG n [] tag text -> Bool
isLast loc = runIdentity $ isLastM loc
-- | Are we at the right end of the document? (Used for monadic node types.)
isLastM :: List c => CursorG n c tag text -> ItemM c Bool
isLastM loc = do
li <- runList (rights loc)
return $ case li of
Nil -> True
_ -> False
-- | Are we at the bottom of the document?
isLeaf :: (NodeClass n c, Monoid tag) => CursorG n c tag text -> Bool
isLeaf loc = isNothing (downParents loc)
-- | Do we have a parent?
isChild :: CursorG n c tag text -> Bool
isChild loc = not (isRoot loc)
-- | Get the node index inside the sequence of children - pure version.
getNodeIndex :: CursorG n [] tag text -> Int
getNodeIndex loc = runIdentity $ getNodeIndexM loc
-- | Get the node index inside the sequence of children - used for monadic node types.
getNodeIndexM :: List c => CursorG n c tag text -> ItemM c Int
getNodeIndexM loc = lengthL (lefts loc)
-- | Do we have children?
hasChildren :: (NodeClass n c, Monoid tag) => CursorG n c tag text -> Bool
hasChildren loc = not (isLeaf loc)
-- Updates ---------------------------------------------------------------------
-- | Change the current content.
setContent :: n c tag text -> CursorG n c tag text -> CursorG n c tag text
setContent t loc = loc { current = t }
-- | Modify the current content.
modifyContent :: (n c tag text -> n c tag text) -> CursorG n c tag text -> CursorG n c tag text
modifyContent f loc = setContent (f (current loc)) loc
-- | Modify the current content - pure version.
modifyContentList :: NodeClass n [] =>
(n [] tag text -> [n [] tag text]) -> CursorG n [] tag text -> Maybe (CursorG n [] tag text)
modifyContentList f loc = runIdentity $ modifyContentListM f loc
-- | Modify the current content - used for monadic node types.
modifyContentListM :: NodeClass n c =>
(n c tag text -> c (n c tag text))
-> CursorG n c tag text
-> ItemM c (Maybe (CursorG n c tag text))
modifyContentListM f loc = removeGoRightM $ insertManyRight (f $ current loc) loc
-- | Modify the current content, allowing for an effect.
modifyContentM :: Monad m => (n [] tag text -> m (n [] tag text)) -> CursorG n [] tag text -> m (CursorG n [] tag text)
modifyContentM f loc = do x <- f (current loc)
return (setContent x loc)
-- | Insert content to the left of the current position.
insertLeft :: List c => n c tag text -> CursorG n c tag text -> CursorG n c tag text
insertLeft t loc = loc { lefts = t `cons` lefts loc }
-- | Insert content to the right of the current position.
insertRight :: List c => n c tag text -> CursorG n c tag text -> CursorG n c tag text
insertRight t loc = loc { rights = t `cons` rights loc }
-- | Insert content to the left of the current position.
insertManyLeft :: List c => c (n c tag text) -> CursorG n c tag text -> CursorG n c tag text
insertManyLeft t loc = loc { lefts = reverseL t `mplus` lefts loc }
-- | Insert content to the right of the current position.
insertManyRight :: List c => c (n c tag text) -> CursorG n c tag text -> CursorG n c tag text
insertManyRight t loc = loc { rights = t `mplus` rights loc }
-- | Insert content as the first child of the current position.
mapChildren :: NodeClass n c => (c (n c tag text) -> c (n c tag text))
-> CursorG n c tag text
-> Maybe (CursorG n c tag text)
mapChildren f loc = let e = current loc in
if isElement e then
Just $ loc { current = modifyChildren f e }
else
Nothing
-- | Insert content as the first child of the current position.
insertFirstChild :: NodeClass n c => n c tag text -> CursorG n c tag text -> Maybe (CursorG n c tag text)
insertFirstChild t = mapChildren (t `cons`)
-- | Insert content as the first child of the current position.
insertLastChild :: NodeClass n c => n c tag text -> CursorG n c tag text -> Maybe (CursorG n c tag text)
insertLastChild t = mapChildren (`mplus` return t)
-- | Insert content as the first child of the current position.
insertManyFirstChild :: NodeClass n c => c (n c tag text) -> CursorG n c tag text -> Maybe (CursorG n c tag text)
insertManyFirstChild t = mapChildren (t `mplus`)
-- | Insert content as the first child of the current position.
insertManyLastChild :: NodeClass n c => c (n c tag text) -> CursorG n c tag text -> Maybe (CursorG n c tag text)
insertManyLastChild t = mapChildren (`mplus` t)
-- | Remove the content on the left of the current position, if any - pure version.
removeLeft :: CursorG n [] tag text -> Maybe (n [] tag text, CursorG n [] tag text)
removeLeft loc = runIdentity $ removeLeftM loc
-- | Remove the content on the left of the current position, if any - used for monadic node types.
removeLeftM :: List c => CursorG n c tag text -> ItemM c (Maybe (n c tag text, CursorG n c tag text))
removeLeftM loc = do
li <- runList (lefts loc)
return $ case li of
Cons l ls -> Just $ (l,loc { lefts = ls })
Nil -> Nothing
-- | Remove the content on the right of the current position, if any - pure version.
removeRight :: CursorG n [] tag text -> Maybe (n [] tag text, CursorG n [] tag text)
removeRight loc = runIdentity $ removeRightM loc
-- | Remove the content on the left of the current position, if any - used for monadic node types.
removeRightM :: List c => CursorG n c tag text -> ItemM c (Maybe (n c tag text, CursorG n c tag text))
removeRightM loc = do
li <- runList (rights loc)
return $ case li of
Cons l ls -> Just $ (l,loc { rights = ls })
Nil -> Nothing
-- | Insert content to the left of the current position.
-- The new content becomes the current position.
insertGoLeft :: List c => n c tag text -> CursorG n c tag text -> CursorG n c tag text
insertGoLeft t loc = loc { current = t, rights = current loc `cons` rights loc }
-- | Insert content to the right of the current position.
-- The new content becomes the current position.
insertGoRight :: List c => n c tag text -> CursorG n c tag text -> CursorG n c tag text
insertGoRight t loc = loc { current = t, lefts = current loc `cons` lefts loc }
-- | Remove the current element.
-- The new position is the one on the left. Pure version.
removeGoLeft :: CursorG n [] tag text -> Maybe (CursorG n [] tag text)
removeGoLeft loc = case lefts loc of
l : ls -> Just loc { current = l, lefts = ls }
[] -> Nothing
-- | Remove the current element.
-- The new position is the one on the left. Pure version.
removeGoLeftM :: List c => CursorG n c tag text -> ItemM c (Maybe (CursorG n c tag text))
removeGoLeftM loc = do
li <- runList (lefts loc)
return $ case li of
Cons l ls -> Just loc { current = l, lefts = ls }
Nil -> Nothing
-- | Remove the current element.
-- The new position is the one on the right. Pure version.
removeGoRight :: CursorG n [] tag text -> Maybe (CursorG n [] tag text)
removeGoRight loc = runIdentity $ removeGoRightM loc
-- | Remove the current element.
-- The new position is the one on the right. Used for monadic node types.
removeGoRightM :: List c => CursorG n c tag text -> ItemM c (Maybe (CursorG n c tag text))
removeGoRightM loc = do
li <- runList (rights loc)
return $ case li of
Cons l ls -> Just loc { current = l, rights = ls }
Nil -> Nothing
-- | Remove the current element.
-- The new position is the parent of the old position.
removeGoUp :: MkElementClass n c => CursorG n c tag text -> Maybe (CursorG n c tag text)
removeGoUp loc =
case (parents loc) of
[] -> Nothing
(pls, v, prs):ps -> Just $
Cur { current = fromTag v (reverseL (lefts loc) `mplus` rights loc)
, lefts = pls, rights = prs, parents = ps
}
-- | private: Gets the given element of a list.
-- Also returns the preceding elements (reversed) and the following elements.
splitChildrenM :: List c => c a -> Int -> ItemM c (Maybe (c a,a,c a))
splitChildrenM _ n | n < 0 = return Nothing
splitChildrenM cs pos = loop mzero cs pos
where
loop acc l n = do
li <- runList l
case li of
Nil -> return Nothing
Cons x l' -> if n == 0
then return $ Just (acc, x, l')
else loop (cons x acc) l' $! n-1
-- | private: combChildren ls x ys = reverse ls ++ [x] ++ rs
combChildren :: List c =>
c a -- ^ ls
-> a -- ^ x
-> c a -- ^ rs
-> c a
combChildren ls t rs = joinL $ foldlL (flip cons) (cons t rs) ls
reverseL :: List c => c a -> c a
reverseL = joinL . foldlL (flip cons) mzero
|