1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
-- Principal component analysis
import Numeric.LinearAlgebra
import System.Directory(doesFileExist)
import System.Process(system)
import Control.Monad(when)
type Vec = Vector Double
type Mat = Matrix Double
-- Vector with the mean value of the columns of a matrix
mean a = constant (recip . fromIntegral . rows $ a) (rows a) <> a
-- covariance matrix of a list of observations stored as rows
cov x = (trans xc <> xc) / fromIntegral (rows x - 1)
where xc = x - asRow (mean x)
-- creates the compression and decompression functions from the desired number of components
pca :: Int -> Mat -> (Vec -> Vec , Vec -> Vec)
pca n dataSet = (encode,decode)
where
encode x = vp <> (x - m)
decode x = x <> vp + m
m = mean dataSet
c = cov dataSet
(_,v) = eigSH' c
vp = takeRows n (trans v)
norm = pnorm PNorm2
main = do
ok <- doesFileExist ("mnist.txt")
when (not ok) $ do
putStrLn "\nTrying to download test datafile..."
system("wget -nv http://dis.um.es/~alberto/material/sp/mnist.txt.gz")
system("gunzip mnist.txt.gz")
return ()
m <- loadMatrix "mnist.txt" -- fromFile "mnist.txt" (5000,785)
let xs = takeColumns (cols m -1) m -- the last column is the digit type (class label)
let x = toRows xs !! 4 -- an arbitrary test Vec
let (pe,pd) = pca 10 xs
let y = pe x
print y -- compressed version
print $ norm (x - pd y) / norm x --reconstruction quality
|