1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE CPP #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Packed.Matrix
-- Copyright : (c) Alberto Ruiz 2007-10
-- License : GPL
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
--
-- A Matrix representation suitable for numerical computations using LAPACK and GSL.
--
-- This module provides basic functions for manipulation of structure.
-----------------------------------------------------------------------------
module Data.Packed.Matrix (
Matrix,
Element,
rows,cols,
(><),
trans,
reshape, flatten,
fromLists, toLists, buildMatrix,
(@@>),
asRow, asColumn,
fromRows, toRows, fromColumns, toColumns,
fromBlocks, diagBlock, toBlocks, toBlocksEvery,
repmat,
flipud, fliprl,
subMatrix, takeRows, dropRows, takeColumns, dropColumns,
extractRows,
diagRect, takeDiag,
mapMatrix, mapMatrixWithIndex, mapMatrixWithIndexM, mapMatrixWithIndexM_,
liftMatrix, liftMatrix2, liftMatrix2Auto,fromArray2D
) where
import Data.Packed.Internal
import qualified Data.Packed.ST as ST
import Data.Array
import Data.List(transpose,intersperse)
import Foreign.Storable(Storable)
import Control.Monad(liftM)
-------------------------------------------------------------------
#ifdef BINARY
import Data.Binary
import Control.Monad(replicateM)
instance (Binary a, Element a, Storable a) => Binary (Matrix a) where
put m = do
let r = rows m
let c = cols m
put r
put c
mapM_ (\i -> mapM_ (\j -> put $ m @@> (i,j)) [0..(c-1)]) [0..(r-1)]
get = do
r <- get
c <- get
xs <- replicateM r $ replicateM c get
return $ fromLists xs
#endif
-------------------------------------------------------------------
instance (Show a, Element a) => (Show (Matrix a)) where
show m = (sizes++) . dsp . map (map show) . toLists $ m
where sizes = "("++show (rows m)++"><"++show (cols m)++")\n"
dsp as = (++" ]") . (" ["++) . init . drop 2 . unlines . map (" , "++) . map unwords' $ transpose mtp
where
mt = transpose as
longs = map (maximum . map length) mt
mtp = zipWith (\a b -> map (pad a) b) longs mt
pad n str = replicate (n - length str) ' ' ++ str
unwords' = concat . intersperse ", "
------------------------------------------------------------------
instance (Element a, Read a) => Read (Matrix a) where
readsPrec _ s = [((rs><cs) . read $ listnums, rest)]
where (thing,rest) = breakAt ']' s
(dims,listnums) = breakAt ')' thing
cs = read . init . fst. breakAt ')' . snd . breakAt '<' $ dims
rs = read . snd . breakAt '(' .init . fst . breakAt '>' $ dims
breakAt c l = (a++[c],tail b) where
(a,b) = break (==c) l
------------------------------------------------------------------
-- | creates a matrix from a vertical list of matrices
joinVert :: Element t => [Matrix t] -> Matrix t
joinVert ms = case common cols ms of
Nothing -> error "(impossible) joinVert on matrices with different number of columns"
Just c -> reshape c $ join (map flatten ms)
-- | creates a matrix from a horizontal list of matrices
joinHoriz :: Element t => [Matrix t] -> Matrix t
joinHoriz ms = trans. joinVert . map trans $ ms
{- | Creates a matrix from blocks given as a list of lists of matrices.
Single row/column components are automatically expanded to match the
corresponding common row and column:
@\> let disp = putStr . dispf 2
\> let vector xs = fromList xs :: Vector Double
\> let diagl = diag . vector
\> let rowm = asRow . vector
\> disp $ fromBlocks [[ident 5, 7, rowm[10,20]], [3, diagl[1,2,3], 0]]
8x10
1 0 0 0 0 7 7 7 10 20
0 1 0 0 0 7 7 7 10 20
0 0 1 0 0 7 7 7 10 20
0 0 0 1 0 7 7 7 10 20
0 0 0 0 1 7 7 7 10 20
3 3 3 3 3 1 0 0 0 0
3 3 3 3 3 0 2 0 0 0
3 3 3 3 3 0 0 3 0 0@
-}
fromBlocks :: Element t => [[Matrix t]] -> Matrix t
fromBlocks = fromBlocksRaw . adaptBlocks
fromBlocksRaw mms = joinVert . map joinHoriz $ mms
adaptBlocks ms = ms' where
bc = case common length ms of
Just c -> c
Nothing -> error "fromBlocks requires rectangular [[Matrix]]"
rs = map (compatdim . map rows) ms
cs = map (compatdim . map cols) (transpose ms)
szs = sequence [rs,cs]
ms' = splitEvery bc $ zipWith g szs (concat ms)
g [Just nr,Just nc] m
| nr == r && nc == c = m
| r == 1 && c == 1 = reshape nc (constantD x (nr*nc))
| r == 1 = fromRows (replicate nr (flatten m))
| otherwise = fromColumns (replicate nc (flatten m))
where
r = rows m
c = cols m
x = m@@>(0,0)
g _ _ = error "inconsistent dimensions in fromBlocks"
--------------------------------------------------------------------------------
-- | create a block diagonal matrix
diagBlock :: (Element t, Num t) => [Matrix t] -> Matrix t
diagBlock ms = fromBlocks $ zipWith f ms [0..]
where
f m k = take n $ replicate k z ++ m : repeat z
n = length ms
z = (1><1) [0]
--------------------------------------------------------------------------------
-- | Reverse rows
flipud :: Element t => Matrix t -> Matrix t
flipud m = fromRows . reverse . toRows $ m
-- | Reverse columns
fliprl :: Element t => Matrix t -> Matrix t
fliprl m = fromColumns . reverse . toColumns $ m
------------------------------------------------------------
{- | creates a rectangular diagonal matrix:
@> diagRect 7 (fromList [10,20,30]) 4 5 :: Matrix Double
(4><5)
[ 10.0, 7.0, 7.0, 7.0, 7.0
, 7.0, 20.0, 7.0, 7.0, 7.0
, 7.0, 7.0, 30.0, 7.0, 7.0
, 7.0, 7.0, 7.0, 7.0, 7.0 ]@
-}
diagRect :: (Storable t) => t -> Vector t -> Int -> Int -> Matrix t
diagRect z v r c = ST.runSTMatrix $ do
m <- ST.newMatrix z r c
let d = min r c `min` (dim v)
mapM_ (\k -> ST.writeMatrix m k k (v@>k)) [0..d-1]
return m
-- | extracts the diagonal from a rectangular matrix
takeDiag :: (Element t) => Matrix t -> Vector t
takeDiag m = fromList [flatten m `at` (k*cols m+k) | k <- [0 .. min (rows m) (cols m) -1]]
------------------------------------------------------------
{- | An easy way to create a matrix:
@\> (2><3)[1..6]
(2><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0 ]@
This is the format produced by the instances of Show (Matrix a), which
can also be used for input.
The input list is explicitly truncated, so that it can
safely be used with lists that are too long (like infinite lists).
Example:
@\> (2><3)[1..]
(2><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0 ]@
-}
(><) :: (Storable a) => Int -> Int -> [a] -> Matrix a
r >< c = f where
f l | dim v == r*c = matrixFromVector RowMajor c v
| otherwise = error $ "inconsistent list size = "
++show (dim v) ++" in ("++show r++"><"++show c++")"
where v = fromList $ take (r*c) l
----------------------------------------------------------------
-- | Creates a matrix with the first n rows of another matrix
takeRows :: Element t => Int -> Matrix t -> Matrix t
takeRows n mt = subMatrix (0,0) (n, cols mt) mt
-- | Creates a copy of a matrix without the first n rows
dropRows :: Element t => Int -> Matrix t -> Matrix t
dropRows n mt = subMatrix (n,0) (rows mt - n, cols mt) mt
-- |Creates a matrix with the first n columns of another matrix
takeColumns :: Element t => Int -> Matrix t -> Matrix t
takeColumns n mt = subMatrix (0,0) (rows mt, n) mt
-- | Creates a copy of a matrix without the first n columns
dropColumns :: Element t => Int -> Matrix t -> Matrix t
dropColumns n mt = subMatrix (0,n) (rows mt, cols mt - n) mt
----------------------------------------------------------------
{- | Creates a 'Matrix' from a list of lists (considered as rows).
@\> fromLists [[1,2],[3,4],[5,6]]
(3><2)
[ 1.0, 2.0
, 3.0, 4.0
, 5.0, 6.0 ]@
-}
fromLists :: Element t => [[t]] -> Matrix t
fromLists = fromRows . map fromList
-- | creates a 1-row matrix from a vector
asRow :: Storable a => Vector a -> Matrix a
asRow v = reshape (dim v) v
-- | creates a 1-column matrix from a vector
asColumn :: Storable a => Vector a -> Matrix a
asColumn v = reshape 1 v
{- | creates a Matrix of the specified size using the supplied function to
to map the row\/column position to the value at that row\/column position.
@> buildMatrix 3 4 (\\(r,c) -> fromIntegral r * fromIntegral c)
(3><4)
[ 0.0, 0.0, 0.0, 0.0, 0.0
, 0.0, 1.0, 2.0, 3.0, 4.0
, 0.0, 2.0, 4.0, 6.0, 8.0]@
Hilbert matrix of order N:
@hilb n = buildMatrix n n (\\(i,j)->1/(fromIntegral i + fromIntegral j +1))@
-}
buildMatrix :: Element a => Int -> Int -> ((Int, Int) -> a) -> Matrix a
buildMatrix rc cc f =
fromLists $ map (map f)
$ map (\ ri -> map (\ ci -> (ri, ci)) [0 .. (cc - 1)]) [0 .. (rc - 1)]
-----------------------------------------------------
fromArray2D :: (Storable e) => Array (Int, Int) e -> Matrix e
fromArray2D m = (r><c) (elems m)
where ((r0,c0),(r1,c1)) = bounds m
r = r1-r0+1
c = c1-c0+1
-- | rearranges the rows of a matrix according to the order given in a list of integers.
extractRows :: Element t => [Int] -> Matrix t -> Matrix t
extractRows l m = fromRows $ extract (toRows m) l
where extract l' is = [l'!!i |i<-is]
{- | creates matrix by repetition of a matrix a given number of rows and columns
@> repmat (ident 2) 2 3 :: Matrix Double
(4><6)
[ 1.0, 0.0, 1.0, 0.0, 1.0, 0.0
, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0
, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0 ]@
-}
repmat :: (Element t) => Matrix t -> Int -> Int -> Matrix t
repmat m r c = fromBlocks $ splitEvery c $ replicate (r*c) m
-- | A version of 'liftMatrix2' which automatically adapt matrices with a single row or column to match the dimensions of the other matrix.
liftMatrix2Auto :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t
liftMatrix2Auto f m1 m2
| compat' m1 m2 = lM f m1 m2
| ok = lM f m1' m2'
| otherwise = error $ "nonconformable matrices in liftMatrix2Auto: " ++ shSize m1 ++ ", " ++ shSize m2
where
(r1,c1) = size m1
(r2,c2) = size m2
r = max r1 r2
c = max c1 c2
r0 = min r1 r2
c0 = min c1 c2
ok = r0 == 1 || r1 == r2 && c0 == 1 || c1 == c2
m1' = conformMTo (r,c) m1
m2' = conformMTo (r,c) m2
lM f m1 m2 = reshape (max (cols m1) (cols m2)) (f (flatten m1) (flatten m2))
compat' :: Matrix a -> Matrix b -> Bool
compat' m1 m2 = s1 == (1,1) || s2 == (1,1) || s1 == s2
where
s1 = size m1
s2 = size m2
------------------------------------------------------------
toBlockRows [r] m | r == rows m = [m]
toBlockRows rs m = map (reshape (cols m)) (takesV szs (flatten m))
where szs = map (* cols m) rs
toBlockCols [c] m | c == cols m = [m]
toBlockCols cs m = map trans . toBlockRows cs . trans $ m
-- | Partition a matrix into blocks with the given numbers of rows and columns.
-- The remaining rows and columns are discarded.
toBlocks :: (Element t) => [Int] -> [Int] -> Matrix t -> [[Matrix t]]
toBlocks rs cs m = map (toBlockCols cs) . toBlockRows rs $ m
-- | Fully partition a matrix into blocks of the same size. If the dimensions are not
-- a multiple of the given size the last blocks will be smaller.
toBlocksEvery :: (Element t) => Int -> Int -> Matrix t -> [[Matrix t]]
toBlocksEvery r c m = toBlocks rs cs m where
(qr,rr) = rows m `divMod` r
(qc,rc) = cols m `divMod` c
rs = replicate qr r ++ if rr > 0 then [rr] else []
cs = replicate qc c ++ if rc > 0 then [rc] else []
-------------------------------------------------------------------
-- Given a column number and a function taking matrix indexes, returns
-- a function which takes vector indexes (that can be used on the
-- flattened matrix).
mk :: Int -> ((Int, Int) -> t) -> (Int -> t)
mk c g = \k -> g (divMod k c)
{- |
@ghci> mapMatrixWithIndexM_ (\\(i,j) v -> printf \"m[%.0f,%.0f] = %.f\\n\" i j v :: IO()) ((2><3)[1 :: Double ..])
m[0,0] = 1
m[0,1] = 2
m[0,2] = 3
m[1,0] = 4
m[1,1] = 5
m[1,2] = 6@
-}
mapMatrixWithIndexM_
:: (Element a, Num a, Monad m) =>
((Int, Int) -> a -> m ()) -> Matrix a -> m ()
mapMatrixWithIndexM_ g m = mapVectorWithIndexM_ (mk c g) . flatten $ m
where
c = cols m
{- |
@ghci> mapMatrixWithIndexM (\\(i,j) v -> Just $ 100*v + 10*i + j) (ident 3:: Matrix Double)
Just (3><3)
[ 100.0, 1.0, 2.0
, 10.0, 111.0, 12.0
, 20.0, 21.0, 122.0 ]@
-}
mapMatrixWithIndexM
:: (Element a, Storable b, Monad m) =>
((Int, Int) -> a -> m b) -> Matrix a -> m (Matrix b)
mapMatrixWithIndexM g m = liftM (reshape c) . mapVectorWithIndexM (mk c g) . flatten $ m
where
c = cols m
{- |
@ghci> mapMatrixWithIndex (\\(i,j) v -> 100*v + 10*i + j) (ident 3:: Matrix Double)
(3><3)
[ 100.0, 1.0, 2.0
, 10.0, 111.0, 12.0
, 20.0, 21.0, 122.0 ]@
-}
mapMatrixWithIndex
:: (Element a, Storable b) =>
((Int, Int) -> a -> b) -> Matrix a -> Matrix b
mapMatrixWithIndex g m = reshape c . mapVectorWithIndex (mk c g) . flatten $ m
where
c = cols m
mapMatrix :: (Storable a, Storable b) => (a -> b) -> Matrix a -> Matrix b
mapMatrix f = liftMatrix (mapVector f)
|