1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.Container
-- Copyright : (c) Alberto Ruiz 2010
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable
--
-- Basic numeric operations on 'Vector' and 'Matrix', including conversion routines.
--
-- The 'Container' class is used to define optimized generic functions which work
-- on 'Vector' and 'Matrix' with real or complex elements.
--
-- Some of these functions are also available in the instances of the standard
-- numeric Haskell classes provided by "Numeric.LinearAlgebra".
--
-----------------------------------------------------------------------------
module Numeric.Container (
-- * Basic functions
module Data.Packed,
constant, linspace,
diag, ident,
ctrans,
-- * Generic operations
Container(..),
-- * Matrix product
Product(..),
optimiseMult,
mXm,mXv,vXm,(<.>),Mul(..),LSDiv(..),
outer, kronecker,
-- * Random numbers
RandDist(..),
randomVector,
gaussianSample,
uniformSample,
meanCov,
-- * Element conversion
Convert(..),
Complexable(),
RealElement(),
RealOf, ComplexOf, SingleOf, DoubleOf,
IndexOf,
module Data.Complex,
-- * Input / Output
dispf, disps, dispcf, vecdisp, latexFormat, format,
loadMatrix, saveMatrix, fromFile, fileDimensions,
readMatrix,
fscanfVector, fprintfVector, freadVector, fwriteVector,
-- * Experimental
build', konst'
) where
import Data.Packed
import Data.Packed.Internal(constantD)
import Numeric.ContainerBoot
import Numeric.Chain
import Numeric.IO
import Data.Complex
import Numeric.LinearAlgebra.Algorithms(Field,linearSolveSVD)
import Data.Packed.Random
------------------------------------------------------------------
{- | creates a vector with a given number of equal components:
@> constant 2 7
7 |> [2.0,2.0,2.0,2.0,2.0,2.0,2.0]@
-}
constant :: Element a => a -> Int -> Vector a
-- constant x n = runSTVector (newVector x n)
constant = constantD-- about 2x faster
{- | Creates a real vector containing a range of values:
@\> linspace 5 (-3,7)
5 |> [-3.0,-0.5,2.0,4.5,7.0]@
Logarithmic spacing can be defined as follows:
@logspace n (a,b) = 10 ** linspace n (a,b)@
-}
linspace :: (Enum e, Container Vector e) => Int -> (e, e) -> Vector e
linspace n (a,b) = addConstant a $ scale s $ fromList [0 .. fromIntegral n-1]
where s = (b-a)/fromIntegral (n-1)
-- | Dot product: @u \<.\> v = dot u v@
(<.>) :: Product t => Vector t -> Vector t -> t
infixl 7 <.>
(<.>) = dot
--------------------------------------------------------
class Mul a b c | a b -> c where
infixl 7 <>
-- | Matrix-matrix, matrix-vector, and vector-matrix products.
(<>) :: Product t => a t -> b t -> c t
instance Mul Matrix Matrix Matrix where
(<>) = mXm
instance Mul Matrix Vector Vector where
(<>) m v = flatten $ m <> asColumn v
instance Mul Vector Matrix Vector where
(<>) v m = flatten $ asRow v <> m
--------------------------------------------------------
class LSDiv b c | b -> c, c->b where
infixl 7 <\>
-- | least squares solution of a linear system, similar to the \\ operator of Matlab\/Octave (based on linearSolveSVD)
(<\>) :: Field t => Matrix t -> b t -> c t
instance LSDiv Vector Vector where
m <\> v = flatten (linearSolveSVD m (reshape 1 v))
instance LSDiv Matrix Matrix where
(<\>) = linearSolveSVD
--------------------------------------------------------
-- | Compute mean vector and covariance matrix of the rows of a matrix.
meanCov :: Matrix Double -> (Vector Double, Matrix Double)
meanCov x = (med,cov) where
r = rows x
k = 1 / fromIntegral r
med = konst k r `vXm` x
meds = konst 1 r `outer` med
xc = x `sub` meds
cov = scale (recip (fromIntegral (r-1))) (trans xc `mXm` xc)
|