1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.ContainerBoot
-- Copyright : (c) Alberto Ruiz 2010
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable
--
-- Module to avoid cyclyc dependencies.
--
-----------------------------------------------------------------------------
module Numeric.ContainerBoot (
-- * Basic functions
ident, diag, ctrans,
-- * Generic operations
Container(..),
-- * Matrix product and related functions
Product(..),
mXm,mXv,vXm,
outer, kronecker,
-- * Element conversion
Convert(..),
Complexable(),
RealElement(),
RealOf, ComplexOf, SingleOf, DoubleOf,
IndexOf,
module Data.Complex,
-- * Experimental
build', konst'
) where
import Data.Packed
import Data.Packed.ST as ST
import Numeric.Conversion
import Data.Packed.Internal
import Numeric.GSL.Vector
import Data.Complex
import Control.Monad(ap)
import Numeric.LinearAlgebra.LAPACK(multiplyR,multiplyC,multiplyF,multiplyQ)
-------------------------------------------------------------------
type family IndexOf (c :: * -> *)
type instance IndexOf Vector = Int
type instance IndexOf Matrix = (Int,Int)
type family ArgOf (c :: * -> *) a
type instance ArgOf Vector a = a -> a
type instance ArgOf Matrix a = a -> a -> a
-------------------------------------------------------------------
-- | Basic element-by-element functions for numeric containers
class (Complexable c, Fractional e, Element e) => Container c e where
-- | create a structure with a single element
scalar :: e -> c e
-- | complex conjugate
conj :: c e -> c e
scale :: e -> c e -> c e
-- | scale the element by element reciprocal of the object:
--
-- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@
scaleRecip :: e -> c e -> c e
addConstant :: e -> c e -> c e
add :: c e -> c e -> c e
sub :: c e -> c e -> c e
-- | element by element multiplication
mul :: c e -> c e -> c e
-- | element by element division
divide :: c e -> c e -> c e
equal :: c e -> c e -> Bool
--
-- element by element inverse tangent
arctan2 :: c e -> c e -> c e
--
-- | cannot implement instance Functor because of Element class constraint
cmap :: (Element b) => (e -> b) -> c e -> c b
-- | constant structure of given size
konst :: e -> IndexOf c -> c e
-- | create a structure using a function
--
-- Hilbert matrix of order N:
--
-- @hilb n = build (n,n) (\\i j -> 1/(i+j+1))@
build :: IndexOf c -> (ArgOf c e) -> c e
--build :: BoundsOf f -> f -> (ContainerOf f) e
--
-- | indexing function
atIndex :: c e -> IndexOf c -> e
-- | index of min element
minIndex :: c e -> IndexOf c
-- | index of max element
maxIndex :: c e -> IndexOf c
-- | value of min element
minElement :: c e -> e
-- | value of max element
maxElement :: c e -> e
-- the C functions sumX/prodX are twice as fast as using foldVector
-- | the sum of elements (faster than using @fold@)
sumElements :: c e -> e
-- | the product of elements (faster than using @fold@)
prodElements :: c e -> e
-- | A more efficient implementation of @cmap (\\x -> if x>0 then 1 else 0)@
--
-- @> step $ linspace 5 (-1,1::Double)
-- 5 |> [0.0,0.0,0.0,1.0,1.0]@
step :: RealElement e => c e -> c e
-- | Element by element version of @case compare a b of {LT -> l; EQ -> e; GT -> g}@.
--
-- Arguments with any dimension = 1 are automatically expanded:
--
-- @> cond ((1>\<4)[1..]) ((3>\<1)[1..]) 0 100 ((3>\<4)[1..]) :: Matrix Double
-- (3><4)
-- [ 100.0, 2.0, 3.0, 4.0
-- , 0.0, 100.0, 7.0, 8.0
-- , 0.0, 0.0, 100.0, 12.0 ]@
cond :: RealElement e
=> c e -- ^ a
-> c e -- ^ b
-> c e -- ^ l
-> c e -- ^ e
-> c e -- ^ g
-> c e -- ^ result
-- | Find index of elements which satisfy a predicate
--
-- @> find (>0) (ident 3 :: Matrix Double)
-- [(0,0),(1,1),(2,2)]@
find :: (e -> Bool) -> c e -> [IndexOf c]
-- | Create a structure from an association list
--
-- @> assoc 5 0 [(2,7),(1,3)] :: Vector Double
-- 5 |> [0.0,3.0,7.0,0.0,0.0]@
assoc :: IndexOf c -- ^ size
-> e -- ^ default value
-> [(IndexOf c, e)] -- ^ association list
-> c e -- ^ result
-- | Modify a structure using an update function
--
-- @> accum (ident 5) (+) [((1,1),5),((0,3),3)] :: Matrix Double
-- (5><5)
-- [ 1.0, 0.0, 0.0, 3.0, 0.0
-- , 0.0, 6.0, 0.0, 0.0, 0.0
-- , 0.0, 0.0, 1.0, 0.0, 0.0
-- , 0.0, 0.0, 0.0, 1.0, 0.0
-- , 0.0, 0.0, 0.0, 0.0, 1.0 ]@
accum :: c e -- ^ initial structure
-> (e -> e -> e) -- ^ update function
-> [(IndexOf c, e)] -- ^ association list
-> c e -- ^ result
--------------------------------------------------------------------------
instance Container Vector Float where
scale = vectorMapValF Scale
scaleRecip = vectorMapValF Recip
addConstant = vectorMapValF AddConstant
add = vectorZipF Add
sub = vectorZipF Sub
mul = vectorZipF Mul
divide = vectorZipF Div
equal u v = dim u == dim v && maxElement (vectorMapF Abs (sub u v)) == 0.0
arctan2 = vectorZipF ATan2
scalar x = fromList [x]
konst = constantD
build = buildV
conj = id
cmap = mapVector
atIndex = (@>)
minIndex = round . toScalarF MinIdx
maxIndex = round . toScalarF MaxIdx
minElement = toScalarF Min
maxElement = toScalarF Max
sumElements = sumF
prodElements = prodF
step = stepF
find = findV
assoc = assocV
accum = accumV
cond = condV condF
instance Container Vector Double where
scale = vectorMapValR Scale
scaleRecip = vectorMapValR Recip
addConstant = vectorMapValR AddConstant
add = vectorZipR Add
sub = vectorZipR Sub
mul = vectorZipR Mul
divide = vectorZipR Div
equal u v = dim u == dim v && maxElement (vectorMapR Abs (sub u v)) == 0.0
arctan2 = vectorZipR ATan2
scalar x = fromList [x]
konst = constantD
build = buildV
conj = id
cmap = mapVector
atIndex = (@>)
minIndex = round . toScalarR MinIdx
maxIndex = round . toScalarR MaxIdx
minElement = toScalarR Min
maxElement = toScalarR Max
sumElements = sumR
prodElements = prodR
step = stepD
find = findV
assoc = assocV
accum = accumV
cond = condV condD
instance Container Vector (Complex Double) where
scale = vectorMapValC Scale
scaleRecip = vectorMapValC Recip
addConstant = vectorMapValC AddConstant
add = vectorZipC Add
sub = vectorZipC Sub
mul = vectorZipC Mul
divide = vectorZipC Div
equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
arctan2 = vectorZipC ATan2
scalar x = fromList [x]
konst = constantD
build = buildV
conj = conjugateC
cmap = mapVector
atIndex = (@>)
minIndex = minIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
maxIndex = maxIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
minElement = ap (@>) minIndex
maxElement = ap (@>) maxIndex
sumElements = sumC
prodElements = prodC
step = undefined -- cannot match
find = findV
assoc = assocV
accum = accumV
cond = undefined -- cannot match
instance Container Vector (Complex Float) where
scale = vectorMapValQ Scale
scaleRecip = vectorMapValQ Recip
addConstant = vectorMapValQ AddConstant
add = vectorZipQ Add
sub = vectorZipQ Sub
mul = vectorZipQ Mul
divide = vectorZipQ Div
equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
arctan2 = vectorZipQ ATan2
scalar x = fromList [x]
konst = constantD
build = buildV
conj = conjugateQ
cmap = mapVector
atIndex = (@>)
minIndex = minIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
maxIndex = maxIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
minElement = ap (@>) minIndex
maxElement = ap (@>) maxIndex
sumElements = sumQ
prodElements = prodQ
step = undefined -- cannot match
find = findV
assoc = assocV
accum = accumV
cond = undefined -- cannot match
---------------------------------------------------------------
instance (Container Vector a) => Container Matrix a where
scale x = liftMatrix (scale x)
scaleRecip x = liftMatrix (scaleRecip x)
addConstant x = liftMatrix (addConstant x)
add = liftMatrix2 add
sub = liftMatrix2 sub
mul = liftMatrix2 mul
divide = liftMatrix2 divide
equal a b = cols a == cols b && flatten a `equal` flatten b
arctan2 = liftMatrix2 arctan2
scalar x = (1><1) [x]
konst v (r,c) = reshape c (konst v (r*c))
build = buildM
conj = liftMatrix conj
cmap f = liftMatrix (mapVector f)
atIndex = (@@>)
minIndex m = let (r,c) = (rows m,cols m)
i = (minIndex $ flatten m)
in (i `div` c,i `mod` c)
maxIndex m = let (r,c) = (rows m,cols m)
i = (maxIndex $ flatten m)
in (i `div` c,i `mod` c)
minElement = ap (@@>) minIndex
maxElement = ap (@@>) maxIndex
sumElements = sumElements . flatten
prodElements = prodElements . flatten
step = liftMatrix step
find = findM
assoc = assocM
accum = accumM
cond = condM
----------------------------------------------------
-- | Matrix product and related functions
class Element e => Product e where
-- | matrix product
multiply :: Matrix e -> Matrix e -> Matrix e
-- | dot (inner) product
dot :: Vector e -> Vector e -> e
-- | sum of absolute value of elements (differs in complex case from @norm1@)
absSum :: Vector e -> RealOf e
-- | sum of absolute value of elements
norm1 :: Vector e -> RealOf e
-- | euclidean norm
norm2 :: Vector e -> RealOf e
-- | element of maximum magnitude
normInf :: Vector e -> RealOf e
instance Product Float where
norm2 = toScalarF Norm2
absSum = toScalarF AbsSum
dot = dotF
norm1 = toScalarF AbsSum
normInf = maxElement . vectorMapF Abs
multiply = multiplyF
instance Product Double where
norm2 = toScalarR Norm2
absSum = toScalarR AbsSum
dot = dotR
norm1 = toScalarR AbsSum
normInf = maxElement . vectorMapR Abs
multiply = multiplyR
instance Product (Complex Float) where
norm2 = toScalarQ Norm2
absSum = toScalarQ AbsSum
dot = dotQ
norm1 = sumElements . fst . fromComplex . vectorMapQ Abs
normInf = maxElement . fst . fromComplex . vectorMapQ Abs
multiply = multiplyQ
instance Product (Complex Double) where
norm2 = toScalarC Norm2
absSum = toScalarC AbsSum
dot = dotC
norm1 = sumElements . fst . fromComplex . vectorMapC Abs
normInf = maxElement . fst . fromComplex . vectorMapC Abs
multiply = multiplyC
----------------------------------------------------------
-- synonym for matrix product
mXm :: Product t => Matrix t -> Matrix t -> Matrix t
mXm = multiply
-- matrix - vector product
mXv :: Product t => Matrix t -> Vector t -> Vector t
mXv m v = flatten $ m `mXm` (asColumn v)
-- vector - matrix product
vXm :: Product t => Vector t -> Matrix t -> Vector t
vXm v m = flatten $ (asRow v) `mXm` m
{- | Outer product of two vectors.
@\> 'fromList' [1,2,3] \`outer\` 'fromList' [5,2,3]
(3><3)
[ 5.0, 2.0, 3.0
, 10.0, 4.0, 6.0
, 15.0, 6.0, 9.0 ]@
-}
outer :: (Product t) => Vector t -> Vector t -> Matrix t
outer u v = asColumn u `multiply` asRow v
{- | Kronecker product of two matrices.
@m1=(2><3)
[ 1.0, 2.0, 0.0
, 0.0, -1.0, 3.0 ]
m2=(4><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0
, 7.0, 8.0, 9.0
, 10.0, 11.0, 12.0 ]@
@\> kronecker m1 m2
(8><9)
[ 1.0, 2.0, 3.0, 2.0, 4.0, 6.0, 0.0, 0.0, 0.0
, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 0.0, 0.0, 0.0
, 7.0, 8.0, 9.0, 14.0, 16.0, 18.0, 0.0, 0.0, 0.0
, 10.0, 11.0, 12.0, 20.0, 22.0, 24.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, -1.0, -2.0, -3.0, 3.0, 6.0, 9.0
, 0.0, 0.0, 0.0, -4.0, -5.0, -6.0, 12.0, 15.0, 18.0
, 0.0, 0.0, 0.0, -7.0, -8.0, -9.0, 21.0, 24.0, 27.0
, 0.0, 0.0, 0.0, -10.0, -11.0, -12.0, 30.0, 33.0, 36.0 ]@
-}
kronecker :: (Product t) => Matrix t -> Matrix t -> Matrix t
kronecker a b = fromBlocks
. splitEvery (cols a)
. map (reshape (cols b))
. toRows
$ flatten a `outer` flatten b
-------------------------------------------------------------------
class Convert t where
real :: Container c t => c (RealOf t) -> c t
complex :: Container c t => c t -> c (ComplexOf t)
single :: Container c t => c t -> c (SingleOf t)
double :: Container c t => c t -> c (DoubleOf t)
toComplex :: (Container c t, RealElement t) => (c t, c t) -> c (Complex t)
fromComplex :: (Container c t, RealElement t) => c (Complex t) -> (c t, c t)
instance Convert Double where
real = id
complex = comp'
single = single'
double = id
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert Float where
real = id
complex = comp'
single = id
double = double'
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert (Complex Double) where
real = comp'
complex = id
single = single'
double = id
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert (Complex Float) where
real = comp'
complex = id
single = id
double = double'
toComplex = toComplex'
fromComplex = fromComplex'
-------------------------------------------------------------------
type family RealOf x
type instance RealOf Double = Double
type instance RealOf (Complex Double) = Double
type instance RealOf Float = Float
type instance RealOf (Complex Float) = Float
type family ComplexOf x
type instance ComplexOf Double = Complex Double
type instance ComplexOf (Complex Double) = Complex Double
type instance ComplexOf Float = Complex Float
type instance ComplexOf (Complex Float) = Complex Float
type family SingleOf x
type instance SingleOf Double = Float
type instance SingleOf Float = Float
type instance SingleOf (Complex a) = Complex (SingleOf a)
type family DoubleOf x
type instance DoubleOf Double = Double
type instance DoubleOf Float = Double
type instance DoubleOf (Complex a) = Complex (DoubleOf a)
type family ElementOf c
type instance ElementOf (Vector a) = a
type instance ElementOf (Matrix a) = a
------------------------------------------------------------
class Build f where
build' :: BoundsOf f -> f -> ContainerOf f
type family BoundsOf x
type instance BoundsOf (a->a) = Int
type instance BoundsOf (a->a->a) = (Int,Int)
type family ContainerOf x
type instance ContainerOf (a->a) = Vector a
type instance ContainerOf (a->a->a) = Matrix a
instance (Element a, Num a) => Build (a->a) where
build' = buildV
instance (Element a, Num a) => Build (a->a->a) where
build' = buildM
buildM (rc,cc) f = fromLists [ [f r c | c <- cs] | r <- rs ]
where rs = map fromIntegral [0 .. (rc-1)]
cs = map fromIntegral [0 .. (cc-1)]
buildV n f = fromList [f k | k <- ks]
where ks = map fromIntegral [0 .. (n-1)]
----------------------------------------------------
-- experimental
class Konst s where
konst' :: Element e => e -> s -> ContainerOf' s e
type family ContainerOf' x y
type instance ContainerOf' Int a = Vector a
type instance ContainerOf' (Int,Int) a = Matrix a
instance Konst Int where
konst' = constantD
instance Konst (Int,Int) where
konst' k (r,c) = reshape c $ konst' k (r*c)
--------------------------------------------------------
-- | conjugate transpose
ctrans :: (Container Vector e, Element e) => Matrix e -> Matrix e
ctrans = liftMatrix conj . trans
-- | Creates a square matrix with a given diagonal.
diag :: (Num a, Element a) => Vector a -> Matrix a
diag v = diagRect 0 v n n where n = dim v
-- | creates the identity matrix of given dimension
ident :: (Num a, Element a) => Int -> Matrix a
ident n = diag (constantD 1 n)
--------------------------------------------------------
findV p x = foldVectorWithIndex g [] x where
g k z l = if p z then k:l else l
findM p x = map ((`divMod` cols x)) $ findV p (flatten x)
assocV n z xs = ST.runSTVector $ do
v <- ST.newVector z n
mapM_ (\(k,x) -> ST.writeVector v k x) xs
return v
assocM (r,c) z xs = ST.runSTMatrix $ do
m <- ST.newMatrix z r c
mapM_ (\((i,j),x) -> ST.writeMatrix m i j x) xs
return m
accumV v0 f xs = ST.runSTVector $ do
v <- ST.thawVector v0
mapM_ (\(k,x) -> ST.modifyVector v k (f x)) xs
return v
accumM m0 f xs = ST.runSTMatrix $ do
m <- ST.thawMatrix m0
mapM_ (\((i,j),x) -> ST.modifyMatrix m i j (f x)) xs
return m
----------------------------------------------------------------------
condM a b l e t = reshape (cols a'') $ cond a' b' l' e' t'
where
args@(a'':_) = conformMs [a,b,l,e,t]
[a', b', l', e', t'] = map flatten args
condV f a b l e t = f a' b' l' e' t'
where
[a', b', l', e', t'] = conformVs [a,b,l,e,t]
|