1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
{-# LANGUAGE CPP, ForeignFunctionInterface #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.GSL.Polynomials
Copyright : (c) Alberto Ruiz 2006
License : GPL-style
Maintainer : Alberto Ruiz (aruiz at um dot es)
Stability : provisional
Portability : uses ffi
Polynomials.
<http://www.gnu.org/software/gsl/manual/html_node/General-Polynomial-Equations.html#General-Polynomial-Equations>
-}
-----------------------------------------------------------------------------
module Numeric.GSL.Polynomials (
polySolve
) where
import Data.Packed.Internal
import Data.Complex
import System.IO.Unsafe (unsafePerformIO)
#if __GLASGOW_HASKELL__ >= 704
import Foreign.C.Types (CInt(..))
#endif
{- | Solution of general polynomial equations, using /gsl_poly_complex_solve/. For example,
the three solutions of x^3 + 8 = 0
@\> polySolve [8,0,0,1]
[(-1.9999999999999998) :+ 0.0,
1.0 :+ 1.732050807568877,
1.0 :+ (-1.732050807568877)]@
The example in the GSL manual: To find the roots of x^5 -1 = 0:
@\> polySolve [-1, 0, 0, 0, 0, 1]
[(-0.8090169943749475) :+ 0.5877852522924731,
(-0.8090169943749475) :+ (-0.5877852522924731),
0.30901699437494734 :+ 0.9510565162951536,
0.30901699437494734 :+ (-0.9510565162951536),
1.0 :+ 0.0]@
-}
polySolve :: [Double] -> [Complex Double]
polySolve = toList . polySolve' . fromList
polySolve' :: Vector Double -> Vector (Complex Double)
polySolve' v | dim v > 1 = unsafePerformIO $ do
r <- createVector (dim v-1)
app2 c_polySolve vec v vec r "polySolve"
return r
| otherwise = error "polySolve on a polynomial of degree zero"
foreign import ccall unsafe "gsl-aux.h polySolve" c_polySolve:: TVCV
|