1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE ScopedTypeVariables #-}
-- | Similar to Data.Pool from resource-pool, but resources are
-- identified by some key. To clarify semantics of this module:
--
-- * The pool holds onto and tracks idle resources. Active resources
-- (those checked out via 'takeKeyedPool') are not tracked at all by
-- 'KeyedPool' itself.
--
-- * The pool limits the number of idle resources per key and the
-- total number of idle resources.
--
-- * There is no limit placed on /active/ resources. As such: there
-- will be no delay when calling 'takeKeyedPool': it will either use
-- an idle resource already present, or create a new one
-- immediately.
--
-- * Once the garbage collector cleans up the 'kpAlive' value, the
-- pool will be shut down, by placing a 'PoolClosed' into the
-- 'kpVar' and destroying all existing idle connection.
--
-- * A reaper thread will destroy unused idle resources regularly. It
-- will stop running once 'kpVar' contains a 'PoolClosed' value.
--
-- * 'takeKeyedPool' is async exception safe, but relies on the
-- /caller/ to ensure prompt cleanup. See its comment for more
-- information.
module Data.KeyedPool
( KeyedPool
, createKeyedPool
, takeKeyedPool
, Managed
, managedResource
, managedReused
, managedRelease
, keepAlive
, Reuse (..)
, dummyManaged
) where
import Control.Concurrent (forkIOWithUnmask, threadDelay)
import Control.Concurrent.STM
import Control.Exception (mask_, catch, SomeException)
import Control.Monad (join, unless, void)
import Data.Map (Map)
import Data.Maybe (isJust)
import qualified Data.Map.Strict as Map
import Data.Time (UTCTime, getCurrentTime, addUTCTime)
import Data.IORef (IORef, newIORef, mkWeakIORef, readIORef)
import qualified Data.Foldable as F
import GHC.Conc (unsafeIOToSTM)
import System.IO.Unsafe (unsafePerformIO)
data KeyedPool key resource = KeyedPool
{ kpCreate :: !(key -> IO resource)
, kpDestroy :: !(resource -> IO ())
, kpMaxPerKey :: !Int
, kpMaxTotal :: !Int
, kpVar :: !(TVar (PoolMap key resource))
, kpAlive :: !(IORef ())
}
data PoolMap key resource
= PoolClosed
| PoolOpen
-- Total number of resources in the pool
{-# UNPACK #-} !Int
!(Map key (PoolList resource))
deriving F.Foldable
-- | A non-empty list which keeps track of its own length and when
-- each resource was created.
data PoolList a
= One a {-# UNPACK #-} !UTCTime
| Cons
a
-- size of the list from this point and on
{-# UNPACK #-} !Int
{-# UNPACK #-} !UTCTime
!(PoolList a)
deriving F.Foldable
plistToList :: PoolList a -> [(UTCTime, a)]
plistToList (One a t) = [(t, a)]
plistToList (Cons a _ t plist) = (t, a) : plistToList plist
plistFromList :: [(UTCTime, a)] -> Maybe (PoolList a)
plistFromList [] = Nothing
plistFromList [(t, a)] = Just (One a t)
plistFromList xs =
Just . snd . go $ xs
where
go [] = error "plistFromList.go []"
go [(t, a)] = (2, One a t)
go ((t, a):rest) =
let (i, rest') = go rest
i' = i + 1
in i' `seq` (i', Cons a i t rest')
-- | Create a new 'KeyedPool' which will automatically clean up after
-- itself when all referenced to the 'KeyedPool' are gone. It will
-- also fork a reaper thread to regularly kill off unused resource.
createKeyedPool
:: Ord key
=> (key -> IO resource) -- ^ create a new resource
-> (resource -> IO ())
-- ^ Destroy a resource. Note that exceptions thrown by this will be
-- silently discarded. If you want reporting, please install an
-- exception handler yourself.
-> Int -- ^ number of resources per key to allow in the pool
-> Int -- ^ number of resources to allow in the pool across all keys
-> (SomeException -> IO ()) -- ^ what to do if the reaper throws an exception
-> IO (KeyedPool key resource)
createKeyedPool create destroy maxPerKey maxTotal onReaperException = do
var <- newTVarIO $ PoolOpen 0 Map.empty
-- We use a different IORef for the weak ref instead of the var
-- above since the reaper thread will always be holding onto a
-- reference.
alive <- newIORef ()
void $ mkWeakIORef alive $ destroyKeyedPool' destroy var
-- Make sure to fork _after_ we've established the mkWeakIORef. If
-- we did it the other way around, it would be possible for an
-- async exception to happen before our destroyKeyedPool' handler
-- was installed, and then reap would have to rely on detecting an
-- STM deadlock before it could ever exit. This way, the reap
-- function will only start running when we're guaranteed that
-- cleanup will be triggered.
-- Ensure that we have a normal masking state in the new thread.
_ <- forkIOWithUnmask $ \restore -> keepRunning $ restore $ reap destroy var
return KeyedPool
{ kpCreate = create
, kpDestroy = destroy
, kpMaxPerKey = maxPerKey
, kpMaxTotal = maxTotal
, kpVar = var
, kpAlive = alive
}
where
keepRunning action =
loop
where
loop = action `catch` \e -> onReaperException e >> loop
-- | Make a 'KeyedPool' inactive and destroy all idle resources.
destroyKeyedPool' :: (resource -> IO ())
-> TVar (PoolMap key resource)
-> IO ()
destroyKeyedPool' destroy var = do
m <- atomically $ swapTVar var PoolClosed
F.mapM_ (ignoreExceptions . destroy) m
-- | Run a reaper thread, which will destroy old resources. It will
-- stop running once our pool switches to PoolClosed, which is handled
-- via the mkWeakIORef in the creation of the pool.
reap :: forall key resource.
Ord key
=> (resource -> IO ())
-> TVar (PoolMap key resource)
-> IO ()
reap destroy var =
loop
where
loop = do
threadDelay (5 * 1000 * 1000)
join $ atomically $ do
m'' <- readTVar var
case m'' of
PoolClosed -> return (return ())
PoolOpen idleCount m
| Map.null m -> retry
| otherwise -> do
(m', toDestroy) <- findStale idleCount m
writeTVar var m'
return $ do
mask_ (mapM_ (ignoreExceptions . destroy) toDestroy)
loop
findStale :: Int
-> Map key (PoolList resource)
-> STM (PoolMap key resource, [resource])
findStale idleCount m = do
-- We want to make sure to get the time _after_ any delays
-- occur due to the retry call above. Since getCurrentTime has
-- no side effects outside of the STM block, this is a safe
-- usage.
now <- unsafeIOToSTM getCurrentTime
let isNotStale time = 30 `addUTCTime` time >= now
let findStale' toKeep toDestroy [] =
(Map.fromList (toKeep []), toDestroy [])
findStale' toKeep toDestroy ((key, plist):rest) =
findStale' toKeep' toDestroy' rest
where
-- Note: By definition, the timestamps must be in
-- descending order, so we don't need to traverse the
-- whole list.
(notStale, stale) = span (isNotStale . fst) $ plistToList plist
toDestroy' = toDestroy . (map snd stale++)
toKeep' =
case plistFromList notStale of
Nothing -> toKeep
Just x -> toKeep . ((key, x):)
let (toKeep, toDestroy) = findStale' id id (Map.toList m)
let idleCount' = idleCount - length toDestroy
return (PoolOpen idleCount' toKeep, toDestroy)
-- | Check out a value from the 'KeyedPool' with the given key.
--
-- This function will internally call 'mask_' to ensure async safety,
-- and will return a value which uses weak references to ensure that
-- the value is cleaned up. However, if you want to ensure timely
-- resource cleanup, you should bracket this operation together with
-- 'managedRelease'.
takeKeyedPool :: Ord key => KeyedPool key resource -> key -> IO (Managed resource)
takeKeyedPool kp key = mask_ $ join $ atomically $ do
(m, mresource) <- fmap go $ readTVar (kpVar kp)
writeTVar (kpVar kp) $! m
return $ do
resource <- maybe (kpCreate kp key) return mresource
alive <- newIORef ()
isReleasedVar <- newTVarIO False
let release action = mask_ $ do
isReleased <- atomically $ swapTVar isReleasedVar True
unless isReleased $
case action of
Reuse -> putResource kp key resource
DontReuse -> ignoreExceptions $ kpDestroy kp resource
_ <- mkWeakIORef alive $ release DontReuse
return Managed
{ _managedResource = resource
, _managedReused = isJust mresource
, _managedRelease = release
, _managedAlive = alive
}
where
go PoolClosed = (PoolClosed, Nothing)
go pcOrig@(PoolOpen idleCount m) =
case Map.lookup key m of
Nothing -> (pcOrig, Nothing)
Just (One a _) ->
(PoolOpen (idleCount - 1) (Map.delete key m), Just a)
Just (Cons a _ _ rest) ->
(PoolOpen (idleCount - 1) (Map.insert key rest m), Just a)
-- | Try to return a resource to the pool. If too many resources
-- already exist, then just destroy it.
putResource :: Ord key => KeyedPool key resource -> key -> resource -> IO ()
putResource kp key resource = do
now <- getCurrentTime
join $ atomically $ do
(m, action) <- fmap (go now) (readTVar (kpVar kp))
writeTVar (kpVar kp) $! m
return action
where
go _ PoolClosed = (PoolClosed, kpDestroy kp resource)
go now pc@(PoolOpen idleCount m)
| idleCount >= kpMaxTotal kp = (pc, kpDestroy kp resource)
| otherwise = case Map.lookup key m of
Nothing ->
let cnt' = idleCount + 1
m' = PoolOpen cnt' (Map.insert key (One resource now) m)
in (m', return ())
Just l ->
let (l', mx) = addToList now (kpMaxPerKey kp) resource l
cnt' = idleCount + maybe 1 (const 0) mx
m' = PoolOpen cnt' (Map.insert key l' m)
in (m', maybe (return ()) (kpDestroy kp) mx)
-- | Add a new element to the list, up to the given maximum number. If we're
-- already at the maximum, return the new value as leftover.
addToList :: UTCTime -> Int -> a -> PoolList a -> (PoolList a, Maybe a)
addToList _ i x l | i <= 1 = (l, Just x)
addToList now _ x l@One{} = (Cons x 2 now l, Nothing)
addToList now maxCount x l@(Cons _ currCount _ _)
| maxCount > currCount = (Cons x (currCount + 1) now l, Nothing)
| otherwise = (l, Just x)
-- | A managed resource, which can be returned to the 'KeyedPool' when
-- work with it is complete. Using garbage collection, it will default
-- to destroying the resource if the caller does not explicitly use
-- 'managedRelease'.
data Managed resource = Managed
{ _managedResource :: !resource
, _managedReused :: !Bool
, _managedRelease :: !(Reuse -> IO ())
, _managedAlive :: !(IORef ())
}
-- | Get the raw resource from the 'Managed' value.
managedResource :: Managed resource -> resource
managedResource = _managedResource
-- | Was this value taken from the pool?
managedReused :: Managed resource -> Bool
managedReused = _managedReused
-- | Release the resource, after which it is invalid to use the
-- 'managedResource' value. 'Reuse' returns the resource to the
-- pool; 'DontReuse' destroys it.
managedRelease :: Managed resource -> Reuse -> IO ()
managedRelease = _managedRelease
data Reuse = Reuse | DontReuse
-- | For testing purposes only: create a dummy Managed wrapper
dummyManaged :: resource -> Managed resource
dummyManaged resource = Managed
{ _managedResource = resource
, _managedReused = False
, _managedRelease = const (return ())
, _managedAlive = unsafePerformIO (newIORef ())
}
ignoreExceptions :: IO () -> IO ()
ignoreExceptions f = f `catch` \(_ :: SomeException) -> return ()
-- | Prevent the managed resource from getting released before you want to use.
keepAlive :: Managed resource -> IO ()
keepAlive = readIORef . _managedAlive
|