File: Properties.hs

package info (click to toggle)
haskell-infinite-list 0.1.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 168 kB
  • sloc: haskell: 1,648; makefile: 5
file content (514 lines) | stat: -rw-r--r-- 23,148 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
-- |
-- Copyright:   (c) 2022 Bodigrim
-- Licence:     BSD3

{-# LANGUAGE PostfixOperators    #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections       #-}
{-# LANGUAGE ViewPatterns        #-}

{-# OPTIONS_GHC -Wno-orphans #-}
{-# OPTIONS_GHC -Wno-unrecognised-warning-flags #-}
{-# OPTIONS_GHC -Wno-x-partial #-}

{-# OPTIONS_GHC -Wno-unrecognised-pragmas #-}
{-# HLINT ignore "Use <$>" #-}
{-# HLINT ignore "Monad law, left identity" #-}
{-# HLINT ignore "Monad law, right identity" #-}

module Main where

import Test.QuickCheck.Function
import Test.Tasty
import Test.Tasty.QuickCheck as QC

import Control.Applicative
import Control.Monad
import Data.Bifunctor
import Data.Bits
import Data.Either
import qualified Data.List as L
import Data.List.Infinite (Infinite(..))
import qualified Data.List.Infinite as I
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NE
import Data.Maybe
import Data.Word (Word32)
import Numeric.Natural
import Prelude hiding (Applicative(..))

instance Arbitrary a => Arbitrary (Infinite a) where
  arbitrary = (:<) <$> arbitrary <*> arbitrary
  shrink = const []

instance Arbitrary a => Arbitrary (NonEmpty a) where
  arbitrary = (:|) <$> arbitrary <*> arbitrary

trim :: Infinite a -> [a]
trim = I.take 10

trim1 :: Infinite a -> [a]
trim1 = I.take 11

mapMapFusion :: Infinite Int -> Infinite Int
mapMapFusion xs = I.map fromIntegral (I.map fromIntegral xs :: Infinite Word)

mapEither :: (a -> Either b c) -> [a] -> ([b], [c])
mapEither f = foldr (either (first . (:)) (second . (:)) . f) ([], [])

main :: IO ()
main = defaultMain $ testGroup "All"
  [ testProperty "head" $
    \(Blind (xs :: Infinite Int)) ->
      I.head xs === L.head (trim xs)
  , testProperty "tail" $
    \(Blind (xs :: Infinite Int)) ->
      trim (I.tail xs) === L.tail (trim1 xs)
  , testProperty "uncons" $
    \(Blind (xs :: Infinite Int)) ->
      Just (fmap trim (I.uncons xs)) === L.uncons (trim1 xs)

  , testProperty "map" $
    \(applyFun -> f :: Int -> Word) (Blind (xs :: Infinite Int)) ->
      trim (I.map f xs) === L.map f (trim xs)

  , testProperty "fmap" $
    \(applyFun -> f :: Int -> Int) (Blind (xs :: Infinite Int)) ->
      trim (fmap f xs) === fmap f (trim xs)
  , testProperty "<$" $
    \(x :: Word) (Blind (xs :: Infinite Int)) ->
      trim (x <$ xs) === trim (fmap (const x) xs)

  , testProperty "pure" $
    \(applyFun -> f :: Int -> Word) (x :: Int) ->
      trim (pure f <*> pure x) === trim (pure (f x))
  , testProperty "*>" $
    \(Blind (xs :: Infinite Int)) (Blind (ys :: Infinite Word)) ->
      trim (xs *> ys) === trim ((id <$ xs) <*> ys)
  , testProperty "<*" $
    \(Blind (xs :: Infinite Int)) (Blind (ys :: Infinite Word)) ->
      trim (xs <* ys) === trim (liftA2 const xs ys)

  , testProperty ">>= 1" $
    \x ((I.cycle .) . applyFun -> k :: Int -> Infinite Word) ->
      trim (return x >>= k) === trim (k x)
  , testProperty ">>= 2" $
    \(Blind (xs :: Infinite Int)) ->
      trim (xs >>= return) === trim xs
  , testProperty ">>= 3" $
    \(Blind xs) ((I.cycle .) . applyFun -> k :: Int -> Infinite Word)  ((I.cycle .) . applyFun -> h :: Word -> Infinite Char) ->
      trim (xs >>= (k >=> h)) === trim ((xs >>= k) >>= h)
  , testProperty ">>" $
    \(Blind (xs :: Infinite Int)) (Blind (ys :: Infinite Word)) ->
      trim (xs >> ys) === trim ys

  , testProperty "concat" $
    \(Blind (xs :: Infinite (NonEmpty Int))) ->
      trim (I.concat xs) === L.take 10 (L.concatMap NE.toList (I.toList xs))
  , testProperty "concatMap" $
    \(applyFun -> f :: Int -> NonEmpty Word) (Blind xs) ->
      trim (I.concatMap f xs) === L.take 10 (L.concatMap (NE.toList . f) (I.toList xs))

  , testProperty "intersperse" $
    \(x :: Int) (Blind xs) ->
      I.take 19 (I.intersperse x xs) === L.intersperse x (trim xs)
  , testProperty "intersperse laziness 1" $
    I.head (I.intersperse undefined ('q' :< undefined)) === 'q'
  , testProperty "intersperse laziness 2" $
    I.take 2 (I.intersperse 'w' ('q' :< undefined)) === "qw"

  , testProperty "intercalate" $
    \(x :: NonEmpty Int) (Blind xs) ->
      I.take (sum (map length (trim xs)) + 9 * length x) (I.intercalate x xs) === L.intercalate (NE.toList x) (trim xs)
  , testProperty "intercalate laziness 1" $
    I.take 3 (I.intercalate undefined ("foo" :< undefined)) === "foo"
  , testProperty "intercalate laziness 2" $
    I.take 6 (I.intercalate (NE.fromList "bar") ("foo" :< undefined)) === "foobar"

  , testProperty "interleave 1" $
    \(Blind (xs :: Infinite Int)) (Blind ys) ->
      trim (I.map snd (I.filter fst (I.zip (I.cycle (True :| [False])) (I.interleave xs ys)))) === trim xs
  , testProperty "interleave 2" $
    \(Blind (xs :: Infinite Int)) (Blind ys) ->
      trim (I.map snd (I.filter fst (I.zip (I.cycle (False :| [True])) (I.interleave xs ys)))) === trim ys
  , testProperty "interleave laziness" $
    I.head (I.interleave ('a' :< undefined) undefined) === 'a'

  , testProperty "transpose []" $
    \(fmap getBlind -> xss :: [Infinite Int]) -> not (null xss) ==>
      trim (I.transpose xss) === L.transpose (map trim xss)
  , testProperty "transpose NE" $
    \(fmap getBlind -> xss :: NonEmpty (Infinite Int)) ->
      NE.fromList (trim (I.transpose xss)) === NE.transpose (NE.map (NE.fromList . trim) xss)
  , testProperty "transpose laziness 1" $
    I.head (I.transpose ['a' :< undefined, 'b' :< undefined]) === "ab"
  , testProperty "transpose laziness 2" $
    I.head (I.transpose (('a' :< undefined) :| ['b' :< undefined])) === 'a' :| "b"

  , testProperty "subsequences" $
    \(Blind (xs :: Infinite Int)) ->
      I.take 16 (I.subsequences xs) === L.subsequences (I.take 4 xs)
  , testProperty "subsequences laziness 1" $
    I.head (I.subsequences undefined) === ""
  , testProperty "subsequences laziness 2" $
    I.take 2 (I.subsequences ('q' :< undefined)) === ["", "q"]

  , testProperty "permutations" $
    \(Blind (xs :: Infinite Int)) ->
      map (I.take 4) (I.take 24 (I.permutations xs)) === L.permutations (I.take 4 xs)
  , testProperty "permutations laziness" $
    I.take 6 (I.map (I.take 3) (I.permutations ('q' :< 'w' :< 'e' :< undefined))) === ["qwe","wqe","ewq","weq","eqw","qew"]

  , testProperty "... Bool" $
    \(x :: Bool) ->
      trim (x I....) === L.take 10 (L.cycle [x..])
  , testProperty "... Int" $
    \(x :: Int) ->
      trim (x I....) === L.take 10 (L.cycle [x..])
  , testProperty "... Int maxBound" $
    \(NonNegative (x' :: Int)) -> let x = maxBound - x' in
      trim (x I....) === L.take 10 (L.cycle [x..])
  , testProperty "... Word" $
    \(x :: Word) ->
      trim (x I....) === L.take 10 (L.cycle [x..])
  , testProperty "... Word maxBound" $
    \(NonNegative (x' :: Word)) -> let x = maxBound - x' in
      trim (x I....) === L.take 10 (L.cycle [x..])
  , testProperty "... Integer" $
    \(x :: Integer) ->
      trim (x I....) === L.take 10 (L.cycle [x..])
  , testProperty "... Natural" $
    \(NonNegative (x' :: Integer)) -> let x = fromInteger x' :: Natural in
      trim (x I....) === L.take 10 (L.cycle [x..])

  , testProperty ".... Bool" $
    \(x :: Bool) y ->
      trim ((x, y) I.....) === L.take 10 (L.cycle [x, y..])
  , testProperty ".... Int" $
    \(x :: Int) y ->
      trim ((x, y) I.....) === L.take 10 (L.cycle [x, y..]) .&&.
      trim ((maxBound + x, y) I.....) === L.take 10 (L.cycle [maxBound + x, y..]) .&&.
      trim ((x, maxBound + y) I.....) === L.take 10 (L.cycle [x, maxBound + y..]) .&&.
      trim ((maxBound + x, maxBound + y) I.....) === L.take 10 (L.cycle [maxBound + x, maxBound + y..])
  , testProperty ".... Word" $
    \(x :: Word) y ->
      trim ((x, y) I.....) === L.take 10 (L.cycle [x, y..]) .&&.
      trim ((maxBound + x, y) I.....) === L.take 10 (L.cycle [maxBound + x, y..]) .&&.
      trim ((x, maxBound + y) I.....) === L.take 10 (L.cycle [x, maxBound + y..]) .&&.
      trim ((maxBound + x, maxBound + y) I.....) === L.take 10 (L.cycle [maxBound + x, maxBound + y..])
  , testProperty ".... Integer" $
    \(x :: Integer) y ->
      trim ((x, y) I.....) === L.take 10 (L.cycle [x, y..])
  , testProperty ".... Natural" $
    \(NonNegative (x' :: Integer)) (NonNegative (y' :: Integer)) ->
      let x = fromInteger x' :: Natural in let y = fromInteger y' in
        trim ((x, y) I.....) === L.take 10 (L.cycle [x, y..])

  , testProperty "toList" $
    \(Blind (xs :: Infinite Int)) ->
      L.take 10 (I.toList xs) === trim xs

  , testProperty "scanl" $
    \(curry . applyFun -> f :: Word -> Int -> Word) s (Blind xs) ->
      trim1 (I.scanl f s xs) === L.scanl f s (trim xs)
  , testProperty "scanl laziness" $
    I.head (I.scanl undefined 'q' undefined) === 'q'
  , testProperty "scanl'" $
    \(curry . applyFun -> f :: Word -> Int -> Word) s (Blind xs) ->
      trim1 (I.scanl' f s xs) === L.scanl' f s (trim xs)
  , testProperty "scanl' laziness" $
    I.head (I.scanl' undefined 'q' undefined) === 'q'
  , testProperty "scanl1" $
    \(curry . applyFun -> f :: Int -> Int -> Int) (Blind xs) ->
      trim (I.scanl1 f xs) === L.scanl1 f (trim xs)
  , testProperty "scanl1 laziness" $
    I.head (I.scanl1 undefined ('q' :< undefined)) === 'q'

  , testProperty "mapAccumL" $
    \(curry . applyFun -> f :: Bool -> Int -> (Bool, Word)) (Blind xs) ->
      trim (I.mapAccumL f False xs) === snd (L.mapAccumL f False (trim xs))
  , testProperty "mapAccumL laziness" $
    I.head (I.mapAccumL (\_ x -> (undefined, x)) undefined ('q' :< undefined)) === 'q'

  , testProperty "iterate" $
    \(applyFun -> f :: Int -> Int) s ->
      trim (I.iterate f s) === L.take 10 (L.iterate f s)
  , testProperty "iterate laziness" $
      I.head (I.iterate undefined 'q') === 'q'
  , testProperty "iterate'" $
    \(applyFun -> f :: Int -> Int) s ->
      trim (I.iterate' f s) === L.take 10 (L.iterate f s)
  , testProperty "iterate' laziness" $
      I.head (I.iterate' undefined 'q') === 'q'

  , testProperty "repeat" $
    \(s :: Int) ->
      trim (I.repeat s) === L.replicate 10 s

  , testProperty "cycle" $
    \(xs :: NonEmpty Int) ->
      trim (I.cycle xs) === L.take 10 (L.cycle (NE.toList xs))
  , testProperty "cycle laziness" $
    I.head (I.cycle ('q' :| undefined)) === 'q'

  , testProperty "unfoldr" $
    \(applyFun -> f :: Word -> (Int, Word)) s ->
      trim (I.unfoldr f s) === L.take 10 (L.unfoldr (Just . f) s)
  , testProperty "unfoldr laziness" $
    I.head (I.unfoldr (, undefined) 'q') === 'q'

  , testProperty "take" $
    \n (Blind (xs :: Infinite Int)) ->
      L.take 10 (I.take n xs) === L.take n (trim xs)
  , testProperty "take laziness 1" $
    I.take 0 undefined === ""
  , testProperty "take laziness 2" $
    I.take 1 ('q' :< undefined) === "q"
  , testProperty "drop" $
    \n (Blind (xs :: Infinite Int)) ->
      trim (I.drop n xs) === L.drop n (I.take (max n 0 + 10) xs)
  , testProperty "drop laziness" $
    I.head (I.drop 0 ('q' :< undefined)) === 'q'
  , testProperty "splitAt" $
    \n (Blind (xs :: Infinite Int)) ->
      bimap (L.take 10) trim (I.splitAt n xs) ===
        first (L.take 10) (L.splitAt n (I.take (max n 0 + 10) xs))
  , testProperty "splitAt laziness 1" $
    fst (I.splitAt 0 undefined) === ""
  , testProperty "splitAt laziness 2" $
    fst (I.splitAt 1 ('q' :< undefined)) === "q"

  , testProperty "takeWhile" $
    \(applyFun -> f :: Ordering -> Bool) (Blind xs) ->
      L.take 10 (L.takeWhile f (I.foldr (:) xs)) ===
        L.take 10 (I.takeWhile f xs)
  , testProperty "takeWhile laziness 1" $
      L.null (I.takeWhile (const False) ('q' :< undefined))
  , testProperty "takeWhile laziness 2" $
      L.head (I.takeWhile (const True) ('q' :< undefined)) === 'q'
  , testProperty "fst . span" $
    \(applyFun -> f :: Ordering -> Bool) (Blind xs) ->
      let ys = L.take 10 (fst (I.span f xs)) in
        L.take 10 (L.takeWhile f (I.take (length ys + 10) xs)) ===
          L.take 10 (fst (I.span f xs))
  , testProperty "fst . break" $
    \(applyFun -> f :: Ordering -> Bool) (Blind xs) ->
      let ys = L.take 10 (fst (I.break f xs)) in
        L.take 10 (L.takeWhile (not . f) (I.take (length ys + 10) xs)) ===
          L.take 10 (fst (I.break f xs))
  , testProperty "dropWhile" $
    \(applyFun -> f :: Ordering -> Bool) (Blind xs) ->
      trim (L.foldr (:<) (I.dropWhile f xs) (I.takeWhile f xs)) === trim xs
  , testProperty "snd . span" $
    \(applyFun -> f :: Ordering -> Bool) (Blind xs) ->
      trim (L.foldr (:<) (snd (I.span f xs)) (I.takeWhile f xs)) === trim xs
  , testProperty "snd . break" $
    \(applyFun -> f :: Ordering -> Bool) (Blind xs) ->
      trim (L.foldr (:<) (snd (I.break f xs)) (I.takeWhile (not . f) xs)) === trim xs
  , testProperty "span laziness" $
    L.head (fst (I.span (/= '\n') ('q' :< undefined))) === 'q'
  , testProperty "break laziness" $
    L.head (fst (I.break (== '\n') ('q' :< undefined))) === 'q'

  , testProperty "stripPrefix" $
    \(xs :: [Int]) (Blind (ys :: Infinite Int)) ->
      fmap trim (I.stripPrefix xs ys) === fmap (L.take 10) (L.stripPrefix xs (I.take (length xs + 10) ys))
  , testProperty "stripPrefix laziness 1" $
    isNothing (I.stripPrefix ('q' : undefined) ('w' :< undefined))
  , testProperty "stripPrefix laziness 2" $
    isJust (I.stripPrefix "foo" ('f' :< 'o' :< 'o' :< undefined))
  , testProperty "isPrefixOf" $
    \(xs :: [Int]) (Blind (ys :: Infinite Int)) ->
      I.isPrefixOf xs ys === L.isPrefixOf xs (I.take (length xs + 10) ys)
  , testProperty "isPrefixOf laziness 1" $
    I.isPrefixOf "" undefined
  , testProperty "isPrefixOf laziness 2" $
    not (I.isPrefixOf ('q' : undefined) ('w' :< undefined))
  , testProperty "isPrefixOf laziness 3" $
    I.isPrefixOf "foo" ('f' :< 'o' :< 'o' :< undefined)

  , testProperty "zip" $
    \(Blind (xs1 :: Infinite Int)) (Blind (xs2 :: Infinite Word)) ->
      trim (I.zip xs1 xs2) === L.zip (trim xs1) (trim xs2)
  , testProperty "zip3" $
    \(Blind (xs1 :: Infinite Int)) (Blind (xs2 :: Infinite Word)) (Blind (xs3 :: Infinite Bool)) ->
      trim (I.zip3 xs1 xs2 xs3) === L.zip3 (trim xs1) (trim xs2) (trim xs3)
  , testProperty "zip4" $
    \(Blind (xs1 :: Infinite Int)) (Blind (xs2 :: Infinite Word)) (Blind (xs3 :: Infinite Bool)) (Blind (xs4 :: Infinite Char)) ->
      trim (I.zip4 xs1 xs2 xs3 xs4) === L.zip4 (trim xs1) (trim xs2) (trim xs3) (trim xs4)
  , testProperty "zip5" $
    \(Blind (xs1 :: Infinite Int)) (Blind (xs2 :: Infinite Word)) (Blind (xs3 :: Infinite Bool)) (Blind (xs4 :: Infinite Char)) (Blind (xs5 :: Infinite Ordering)) ->
      trim (I.zip5 xs1 xs2 xs3 xs4 xs5) === L.zip5 (trim xs1) (trim xs2) (trim xs3) (trim xs4) (trim xs5)
  , testProperty "zip6" $
    \(Blind (xs1 :: Infinite Int)) (Blind (xs2 :: Infinite Word)) (Blind (xs3 :: Infinite Bool)) (Blind (xs4 :: Infinite Char)) (Blind (xs5 :: Infinite Ordering)) (Blind (xs6 :: Infinite String)) ->
      trim (I.zip6 xs1 xs2 xs3 xs4 xs5 xs6) === L.zip6 (trim xs1) (trim xs2) (trim xs3) (trim xs4) (trim xs5) (trim xs6)
  , testProperty "zip7" $
    \(Blind (xs1 :: Infinite Int)) (Blind (xs2 :: Infinite Word)) (Blind (xs3 :: Infinite Bool)) (Blind (xs4 :: Infinite Char)) (Blind (xs5 :: Infinite Ordering)) (Blind (xs6 :: Infinite String)) (Blind (xs7 :: Infinite Integer)) ->
      trim (I.zip7 xs1 xs2 xs3 xs4 xs5 xs6 xs7) === L.zip7 (trim xs1) (trim xs2) (trim xs3) (trim xs4) (trim xs5) (trim xs6) (trim xs7)

  , testProperty "unzip" $
    \(Blind (xs :: Infinite (Int, Word))) ->
      bimap trim trim (I.unzip xs) === L.unzip (trim xs)
  , testProperty "unzip3" $
    \(Blind (xs :: Infinite (Int, Word, Bool))) ->
      (\(xs1, xs2, xs3) -> (trim xs1, trim xs2, trim xs3)) (I.unzip3 xs) === L.unzip3 (trim xs)
  , testProperty "unzip4" $
    \(Blind (xs :: Infinite (Int, Word, Bool, Char))) ->
      (\(xs1, xs2, xs3, xs4) -> (trim xs1, trim xs2, trim xs3, trim xs4)) (I.unzip4 xs) === L.unzip4 (trim xs)
  , testProperty "unzip5" $
    \(Blind (xs :: Infinite (Int, Word, Bool, Char, Ordering))) ->
      (\(xs1, xs2, xs3, xs4, xs5) -> (trim xs1, trim xs2, trim xs3, trim xs4, trim xs5)) (I.unzip5 xs) === L.unzip5 (trim xs)
  , testProperty "unzip6" $
    \(Blind (xs :: Infinite (Int, Word, Bool, Char, Ordering, String))) ->
      (\(xs1, xs2, xs3, xs4, xs5, xs6) -> (trim xs1, trim xs2, trim xs3, trim xs4, trim xs5, trim xs6)) (I.unzip6 xs) === L.unzip6 (trim xs)
  , testProperty "unzip7" $
    \(Blind (xs :: Infinite (Int, Word, Bool, Char, Ordering, String, Integer))) ->
      (\(xs1, xs2, xs3, xs4, xs5, xs6, xs7) -> (trim xs1, trim xs2, trim xs3, trim xs4, trim xs5, trim xs6, trim xs7)) (I.unzip7 xs) === L.unzip7 (trim xs)

  , testProperty "lines" $
    \(Blind (xs :: Infinite Char)) ->
      I.take 3 (I.lines xs) === L.take 3 (L.lines (I.foldr (:) xs))
  , testProperty "lines laziness 1" $
    L.head (I.head (I.lines ('q' :< undefined))) === 'q'
  , testProperty "lines laziness 2" $
    L.null (I.head (I.lines ('\n' :< undefined)))
  , testProperty "words" $
    \(Blind (xs :: Infinite Char)) ->
      I.take 3 (I.map NE.toList (I.words xs)) === L.take 3 (L.words (I.foldr (:) xs))
  , testProperty "words laziness" $
    NE.head (I.head (I.words ('q' :< undefined))) === 'q'
  , testProperty "unlines" $
    \(Blind (xs :: Infinite [Char])) ->
      trim (I.unlines xs) === L.take 10 (L.unlines (trim xs))
  , testProperty "unlines laziness" $
    I.take 2 (I.unlines ("q" :< undefined)) === "q\n"
  , testProperty "unwords" $
    \(Blind (xs :: Infinite (NonEmpty Char))) ->
      trim (I.unwords xs) === L.take 10 (L.unwords (L.map NE.toList (I.foldr (:) xs)))
  , testProperty "unwords laziness" $
    I.take 2 (I.unwords (('q' :| []) :< undefined)) === "q "
  , testProperty "unlines . lines" $
    \(Blind (xs :: Infinite Char)) ->
      I.take 100 xs === I.take 100 (I.unlines (I.lines xs))

  , testProperty "group" $
    \(Blind (ys :: Infinite Ordering)) ->
      trim (I.group ys) === L.take 10 (NE.group (I.foldr (:) ys))
  , testProperty "groupBy" $
    \(curry . applyFun -> f :: Ordering -> Ordering -> Bool) (Blind ys) ->
      all (\x -> not $ all (f x) [minBound..maxBound]) [minBound..maxBound] ==>
        trim (I.groupBy f ys) === L.take 10 (NE.groupBy f (I.foldr (:) ys))
  , testProperty "group laziness" $
    NE.head (I.head (I.group ('q' :< undefined))) === 'q'
  , testProperty "nub" $
    \(Blind (ys :: Infinite (Large Int))) ->
      fmap getLarge (I.take 3 (I.nub ys)) === fmap getLarge (L.take 3 (L.nub (I.foldr (:) ys)))
  , testProperty "nub laziness" $
    I.head (I.nub ('q' :< undefined)) === 'q'

  , testProperty "delete" $
    \(x :: Ordering) (Blind xs) ->
      trim (I.delete x xs) === L.take 10 (L.delete x (I.foldr (:) xs))
  , testProperty "delete laziness" $
    I.head (I.delete 'q' ('w' :< undefined)) === 'w'
  , testProperty "insert" $
    \(x :: Int) (Blind xs) ->
      trim (I.insert x xs) === L.take 10 (L.insert x (I.foldr (:) xs))
  , testProperty "insert laziness" $
    I.take 2 (I.insert 'q' ('w' :< undefined)) === "qw"

  , testProperty "\\\\" $
    \(Blind (xs :: Infinite Ordering)) ys ->
      trim (xs I.\\ ys) === L.take 10 (I.foldr (:) xs L.\\ ys)
  , testProperty "\\\\ laziness" $
    I.head (('q' :< undefined) I.\\ []) === 'q'
  , testProperty "union" $
    \xs (Blind (ys :: Infinite Ordering)) ->
      I.take 3 (I.union xs ys) === L.take 3 (xs `L.union` I.foldr (:) ys)
  , testProperty "union laziness" $
    I.head (I.union ('q' : undefined) undefined) === 'q'
  , testProperty "intersect" $
    \(Blind (xs :: Infinite Ordering)) ys -> not (null ys) ==>
      I.head (I.intersect xs ys) === L.head (I.foldr (:) xs `L.intersect` ys)
  , testProperty "intersect laziness" $
    I.head (I.intersect ('q' :< undefined) ('q' : undefined)) === 'q'

  , testProperty "inits" $
    \(Blind (xs :: Infinite Int)) ->
      I.take 21 (I.inits xs) === L.inits (I.take 20 xs)
  , testProperty "inits laziness 1" $
    L.null (I.head (I.inits undefined))
  , testProperty "inits laziness 2" $
    I.take 2 (I.inits ('q' :< undefined)) === ["", "q"]
  , testProperty "inits1" $
    \(Blind (xs :: Infinite Int)) ->
      map NE.toList (trim (I.inits1 xs)) === L.tail (L.inits (trim xs))
  , testProperty "tails" $
    \(Blind (xs :: Infinite Int)) ->
      map trim (trim (I.tails xs)) === map (L.take 10) (L.take 10 (L.tails (I.take 20 xs)))
  , testProperty "tails laziness" $
    I.head (I.head (I.tails ('q' :< undefined))) === 'q'

  , testProperty "lookup" $
    \(xs :: [(Int, Word)]) y zs ->
      let pairs = NE.fromList (xs ++ (y : zs)) in
        Just (I.lookup (fst y) (I.cycle pairs)) === L.lookup (fst y) (NE.toList pairs)
  , testProperty "lookup laziness" $
    I.lookup True ((True, 'q') :< undefined) === 'q'
  , testProperty "find" $
    \(xs :: [(Int, Word)]) y zs ->
      let pairs = NE.fromList (xs ++ (y : zs)) in
        Just (I.find ((== snd y) . snd) (I.cycle pairs)) === L.find ((== snd y) . snd) (NE.toList pairs)
  , testProperty "find laziness" $
    I.find odd (1 :< undefined) === (1 :: Int)

  , testProperty "filter" $
    \(applyFun -> f :: Int -> Bool) xs (Blind ys) ->
      let us = L.filter f xs in
        us === I.take (length us) (I.filter f (I.prependList xs ys))
  , testProperty "mapMaybe" $
    \(applyFun -> f :: Int -> Maybe Word) xs (Blind ys) ->
      let us = mapMaybe f xs in
        us === I.take (length us) (I.mapMaybe f (I.prependList xs ys))
  , testProperty "catMaybes" $
    \(xs :: [Maybe Word]) (Blind ys) ->
      let us = catMaybes xs in
        us === I.take (length us) (I.catMaybes (I.prependList xs ys))
  , testProperty "partition" $
    \(applyFun -> f :: Int -> Bool) xs (Blind ys) ->
      let (us, vs) = L.partition f xs in
        let (us', vs') = I.partition f (I.prependList xs ys) in
          us === I.take (length us) us' .&&. vs === I.take (length vs) vs'
  , testProperty "mapEither" $
    \(applyFun -> f :: Int -> Either Word Char) xs (Blind ys) ->
      let (us, vs) = mapEither f xs in
        let (us', vs') = I.mapEither f (I.prependList xs ys) in
          us === I.take (length us) us' .&&. vs === I.take (length vs) vs'
  , testProperty "partitionEithers" $
    \(xs :: [Either Word Char]) (Blind ys) ->
      let (us, vs) = partitionEithers xs in
        let (us', vs') = I.partitionEithers (I.prependList xs ys) in
          us === I.take (length us) us' .&&. vs === I.take (length vs) vs'

  , testProperty "!!" $
    \(Blind (xs :: Infinite Int)) n ->
      xs I.!! n === I.foldr (:) xs L.!! fromIntegral n
  , testProperty "tabulate" $
    \(applyFun -> f :: Word -> Char) n ->
      I.tabulate f I.!! n === f n

  , testProperty "elemIndex" $
    \xs (x :: Int) (Blind ys) ->
      let zs = I.prependList xs (x :< ys) in
        Just (fromIntegral (I.elemIndex x zs)) === L.elemIndex x (I.foldr (:) zs)
  , testProperty "elemIndices" $
    \xs (x :: Ordering) (Blind ys) ->
      let zs = I.prependList xs (x :< ys) in
        let is = L.elemIndices x (xs ++ [x]) in
          map fromIntegral (I.take (length is) (I.elemIndices x zs)) === is

  , testProperty ">>= 32bit" $
    let ix = maxBound :: Word32 in
      finiteBitSize (0 :: Word) /= 32 ||
        I.head (I.tail (I.genericDrop ix (I.repeat () >>= const (False :< I.repeat True))))
  ]