File: TestUtils.hs

package info (click to toggle)
haskell-integer-logarithms 1.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 112 kB
  • sloc: haskell: 491; makefile: 3
file content (77 lines) | stat: -rw-r--r-- 2,529 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
-- |
-- Module:      Math.NumberTheory.TestUtils
-- Copyright:   (c) 2016 Andrew Lelechenko
-- Licence:     MIT
-- Maintainer:  Andrew Lelechenko <andrew.lelechenko@gmail.com>
-- Stability:   Provisional
-- Portability: Non-portable (GHC extensions)
--

{-# LANGUAGE FlexibleContexts           #-}
{-# LANGUAGE FlexibleInstances          #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses      #-}

{-# OPTIONS_GHC -fno-warn-orphans #-}

module Math.NumberTheory.TestUtils
  ( module Test.SmallCheck.Series
  , Power (..)
  , Huge (..)
  , testSmallAndQuick
  ) where

import Test.Tasty
import Test.Tasty.SmallCheck as SC
import Test.Tasty.QuickCheck as QC hiding (Positive, NonNegative, generate, getNonNegative)
import Test.SmallCheck.Series (Positive(..), NonNegative(..), Serial(..), Series, generate)

import Control.Applicative

testSmallAndQuick
  :: SC.Testable IO a
  => QC.Testable a
  => String -> a -> TestTree
testSmallAndQuick name f = testGroup name
  [ SC.testProperty "smallcheck" f
  , QC.testProperty "quickcheck" f
  ]

-------------------------------------------------------------------------------
-- Power

newtype Power a = Power { getPower :: a }
  deriving (Eq, Ord, Read, Show, Num, Enum, Bounded, Integral, Real)

instance (Monad m, Num a, Ord a, Serial m a) => Serial m (Power a) where
  series = Power <$> series `suchThatSerial` (> 0)

instance (Num a, Ord a, Integral a, Arbitrary a) => Arbitrary (Power a) where
  arbitrary = Power <$> (getSmall <$> arbitrary) `suchThat` (> 0)
  shrink (Power x) = Power <$> filter (> 0) (shrink x)

suchThatSerial :: Series m a -> (a -> Bool) -> Series m a
suchThatSerial s p = s >>= \x -> if p x then pure x else empty

-------------------------------------------------------------------------------
-- Huge

newtype Huge a = Huge { getHuge :: a }
  deriving (Eq, Ord, Read, Show, Num, Enum, Bounded, Integral, Real)

instance (Num a, Arbitrary a) => Arbitrary (Huge a) where
  arbitrary = do
    Positive l <- arbitrary
    ds <- vector (l :: Int)
    return $ Huge $ foldl1 (\acc n -> acc * 2^(63 :: Int) + n) ds

-- | maps 'Huge' constructor over series
instance Serial m a => Serial m (Huge a) where
  series = fmap Huge series

-------------------------------------------------------------------------------
-- Positive from smallcheck

instance (Num a, Ord a, Arbitrary a) => Arbitrary (Positive a) where
  arbitrary = Positive <$> (arbitrary `suchThat` (> 0))
  shrink (Positive x) = Positive <$> filter (> 0) (shrink x)