File: Fourth.hs

package info (click to toggle)
haskell-integer-roots 1.0.2.0-4
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 312 kB
  • sloc: haskell: 1,555; makefile: 5
file content (247 lines) | stat: -rw-r--r-- 8,961 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
-- |
-- Module:      Math.NumberTheory.Roots.Squares
-- Copyright:   (c) 2011 Daniel Fischer, 2016-2020 Andrew Lelechenko
-- Licence:     MIT
-- Maintainer:  Daniel Fischer <daniel.is.fischer@googlemail.com>
--
-- Functions dealing with fourth powers. Efficient calculation of integer fourth
-- roots and efficient testing for being a square's square.

{-# LANGUAGE CPP       #-}
{-# LANGUAGE MagicHash #-}

module Math.NumberTheory.Roots.Fourth
    ( integerFourthRoot
    , integerFourthRoot'
    , exactFourthRoot
    , isFourthPower
    , isFourthPower'
    , isPossibleFourthPower
    ) where

import Data.Bits (finiteBitSize, (.&.))
import GHC.Exts (Int#, Ptr(..), int2Double#, double2Int#, isTrue#, sqrtDouble#, (<#))
import Numeric.Natural (Natural)

#ifdef MIN_VERSION_integer_gmp
import GHC.Exts (uncheckedIShiftRA#, (*#), (-#))
import GHC.Integer.GMP.Internals (Integer(..), shiftLInteger, shiftRInteger, sizeofBigNat#)
import GHC.Integer.Logarithms (integerLog2#)
#define IS S#
#define IP Jp#
#define bigNatSize sizeofBigNat
#else
import GHC.Exts (uncheckedShiftRL#, minusWord#, timesWord#)
import GHC.Num.BigNat (bigNatSize#)
import GHC.Num.Integer (Integer(..), integerLog2#, integerShiftR#, integerShiftL#)
#endif

import Math.NumberTheory.Utils.BitMask (indexBitSet)

-- | Calculate the integer fourth root of a nonnegative number,
--   that is, the largest integer @r@ with @r^4 <= n@.
--   Throws an error on negaitve input.
{-# SPECIALISE integerFourthRoot :: Int -> Int,
                                    Word -> Word,
                                    Integer -> Integer,
                                    Natural -> Natural
  #-}
integerFourthRoot :: Integral a => a -> a
integerFourthRoot n
    | n < 0     = error "integerFourthRoot: negative argument"
    | otherwise = integerFourthRoot' n

-- | Calculate the integer fourth root of a nonnegative number,
--   that is, the largest integer @r@ with @r^4 <= n@.
--   The condition is /not/ checked.
{-# RULES
"integerFourthRoot'/Int"     integerFourthRoot' = biSqrtInt
"integerFourthRoot'/Word"    integerFourthRoot' = biSqrtWord
"integerFourthRoot'/Integer" integerFourthRoot' = biSqrtIgr
  #-}
{-# INLINE [1] integerFourthRoot' #-}
integerFourthRoot' :: Integral a => a -> a
integerFourthRoot' 0 = 0
integerFourthRoot' n = newton4 n (approxBiSqrt n)

-- | Returns @Nothing@ if @n@ is not a fourth power,
--   @Just r@ if @n == r^4@ and @r >= 0@.
{-# SPECIALISE exactFourthRoot :: Int -> Maybe Int,
                                  Word -> Maybe Word,
                                  Integer -> Maybe Integer,
                                  Natural -> Maybe Natural
  #-}
exactFourthRoot :: Integral a => a -> Maybe a
exactFourthRoot 0 = Just 0
exactFourthRoot n
    | n < 0     = Nothing
    | isPossibleFourthPower n && r2*r2 == n = Just r
    | otherwise = Nothing
      where
        r = integerFourthRoot' n
        r2 = r*r

-- | Test whether an integer is a fourth power.
--   First nonnegativity is checked, then the unchecked
--   test is called.
{-# SPECIALISE isFourthPower :: Int -> Bool,
                                Word -> Bool,
                                Integer -> Bool,
                                Natural -> Bool
  #-}
isFourthPower :: Integral a => a -> Bool
isFourthPower 0 = True
isFourthPower n = n > 0 && isFourthPower' n

-- | Test whether a nonnegative number is a fourth power.
--   The condition is /not/ checked. If a number passes the
--   'isPossibleFourthPower' test, its integer fourth root
--   is calculated.
{-# SPECIALISE isFourthPower' :: Int -> Bool,
                                 Word -> Bool,
                                 Integer -> Bool,
                                 Natural -> Bool
  #-}
isFourthPower' :: Integral a => a -> Bool
isFourthPower' n = isPossibleFourthPower n && r2*r2 == n
  where
    r = integerFourthRoot' n
    r2 = r*r

-- | Test whether a nonnegative number is a possible fourth power.
--   The condition is /not/ checked.
--   This eliminates about 99.958% of numbers.
{-# SPECIALISE isPossibleFourthPower :: Int -> Bool,
                                        Word -> Bool,
                                        Integer -> Bool,
                                        Natural -> Bool
  #-}
isPossibleFourthPower :: Integral a => a -> Bool
isPossibleFourthPower n'
  =  indexBitSet mask256 (fromInteger (n .&. 255))
  && indexBitSet mask425 (fromInteger (n `rem` 425))
  && indexBitSet mask377 (fromInteger (n `rem` 377))
  where
    n = toInteger n'

{-# SPECIALISE newton4 :: Integer -> Integer -> Integer #-}
newton4 :: Integral a => a -> a -> a
newton4 n a = go (step a)
      where
        step k = (3*k + n `quot` (k*k*k)) `quot` 4
        go k
            | m < k     = go m
            | otherwise = k
              where
                m = step k

{-# SPECIALISE approxBiSqrt :: Integer -> Integer #-}
approxBiSqrt :: Integral a => a -> a
approxBiSqrt = fromInteger . appBiSqrt . fromIntegral

-- Find a fairly good approximation to the fourth root.
-- About 48 bits should be correct for large Integers.
appBiSqrt :: Integer -> Integer
appBiSqrt (IS i#) = IS (double2Int# (sqrtDouble# (sqrtDouble# (int2Double# i#))))
appBiSqrt n@(IP bn#)
    | isTrue# ((bigNatSize# bn#) <# thresh#) =
          floor (sqrt . sqrt $ fromInteger n :: Double)
    | otherwise = case integerLog2# n of
#ifdef MIN_VERSION_integer_gmp
                    l# -> case uncheckedIShiftRA# l# 2# -# 47# of
                            h# -> case shiftRInteger n (4# *# h#) of
                                    m -> case floor (sqrt $ sqrt $ fromInteger m :: Double) of
                                            r -> shiftLInteger r h#
#else
                    l# -> case uncheckedShiftRL# l# 2# `minusWord#` 47## of
                            h# -> case integerShiftR# n (4## `timesWord#` h#) of
                                    m -> case floor (sqrt $ sqrt $ fromInteger m :: Double) of
                                            r -> integerShiftL# r h#
#endif
    where
        -- threshold for shifting vs. direct fromInteger
        -- we shift when we expect more than 256 bits
        thresh# :: Int#
        thresh# = if finiteBitSize (0 :: Word) == 64 then 5# else 9#

-- There's already a check for negative in integerFourthRoot,
-- but integerFourthRoot' is exported directly too.
appBiSqrt _ = error "integerFourthRoot': negative argument"

-----------------------------------------------------------------------------
-- Generated by 'Math.NumberTheory.Utils.BitMask.vectorToAddrLiteral'

mask256 :: Ptr Word
mask256 = Ptr "\ETX\NUL\ETX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL\STX\NUL"#

mask425 :: Ptr Word
mask425 = Ptr "\ETX\NUL!\NUL\NUL\NUL\f\NUL\NUL\NULB\NUL \EOT\NUL\NUL\NUL\SOH\NUL\NUL@\b\NUL\132\NUL\SOH\NUL \STX\NUL\NUL\b\SOH\128\DLE\NUL\NUL\NUL\EOT\NUL\NUL\NUL!\NUL\DLE\STX\128\NUL\128\NUL\NUL\NUL \NUL"#

mask377 :: Ptr Word
mask377 = Ptr "\ETX\NUL\SOH \NUL\NUL0\NUL\STXD\130@\NUL\b \NUL\NUL\b\EOT\SOH \ACK\NUL\NUL@\DLE\NUL\NUL\NUL\NUL\NUL\SOH!\NUL\NUL@\NUL\NUL\NUL\n@\NUL\b\NUL\NUL\DLE \NUL"#

-- biSqRes256 :: V.Vector Bool
-- biSqRes256 = runST $ do
--     ar <- MV.replicate 256 False
--     let note 257 = return ()
--         note i = MV.unsafeWrite ar i True >> note (i+16)
--     MV.unsafeWrite ar 0 True
--     MV.unsafeWrite ar 16 True
--     note 1
--     V.unsafeFreeze ar

-- biSqRes425 :: V.Vector Bool
-- biSqRes425 = runST $ do
--     ar <- MV.replicate 425 False
--     let note 154 = return ()
--         note i = MV.unsafeWrite ar ((i*i*i*i) `rem` 425) True >> note (i+1)
--     note 0
--     V.unsafeFreeze ar

-- biSqRes377 :: V.Vector Bool
-- biSqRes377 = runST $ do
--     ar <- MV.replicate 377 False
--     let note 144 = return ()
--         note i = MV.unsafeWrite ar ((i*i*i*i) `rem` 377) True >> note (i+1)
--     note 0
--     V.unsafeFreeze ar

-----------------------------------------------------------------------------
-- Specialisations for Int, Word, and Integer

biSqRootIntLimit :: Int
biSqRootIntLimit = if finiteBitSize (0 :: Word) == 64 then 55108 else 215

biSqrtInt :: Int -> Int
biSqrtInt 0 = 0
biSqrtInt n
    | r > biSqRootIntLimit = biSqRootIntLimit
    | n < r4    = r-1
    | otherwise = r
      where
        x :: Double
        x = fromIntegral n
        -- timed faster than x**0.25, never too small
        r = truncate (sqrt (sqrt x))
        r2 = r*r
        r4 = r2*r2

biSqRootWordLimit :: Word
biSqRootWordLimit = if finiteBitSize (0 :: Word) == 64 then 65535 else 255

biSqrtWord :: Word -> Word
biSqrtWord 0 = 0
biSqrtWord n
    | r > biSqRootWordLimit = biSqRootWordLimit
    | n < r4    = r-1
    | otherwise = r
      where
        x :: Double
        x = fromIntegral n
        r = truncate (sqrt (sqrt x))
        r2 = r*r
        r4 = r2*r2

biSqrtIgr :: Integer -> Integer
biSqrtIgr 0 = 0
biSqrtIgr n = newton4 n (approxBiSqrt n)