1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
-- |
-- Module: Math.NumberTheory.Roots.Squares
-- Copyright: (c) 2011 Daniel Fischer, 2016-2020 Andrew Lelechenko
-- Licence: MIT
-- Maintainer: Daniel Fischer <daniel.is.fischer@googlemail.com>
--
-- Functions dealing with squares. Efficient calculation of integer square roots
-- and efficient testing for squareness.
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MagicHash #-}
module Math.NumberTheory.Roots.Squares
( -- * Square root calculation
integerSquareRoot
, integerSquareRoot'
, integerSquareRootRem
, integerSquareRootRem'
, exactSquareRoot
-- * Tests for squares
, isSquare
, isSquare'
, isPossibleSquare
) where
import Data.Bits (finiteBitSize, (.&.))
import GHC.Exts (Ptr(..))
import Numeric.Natural (Natural)
import Math.NumberTheory.Roots.Squares.Internal
import Math.NumberTheory.Utils.BitMask (indexBitSet)
-- | For a non-negative input \( n \)
-- calculate its integer square root \( \lfloor \sqrt{n} \rfloor \).
-- Throw an error on negative input.
--
-- >>> integerSquareRoot 99
-- 9
-- >>> integerSquareRoot 100
-- 10
-- >>> integerSquareRoot 101
-- 10
{-# SPECIALISE integerSquareRoot :: Int -> Int,
Word -> Word,
Integer -> Integer,
Natural -> Natural
#-}
integerSquareRoot :: Integral a => a -> a
integerSquareRoot n
| n < 0 = error "integerSquareRoot: negative argument"
| otherwise = integerSquareRoot' n
-- | Calculate the integer square root of a non-negative number @n@,
-- that is, the largest integer @r@ with @r*r <= n@.
-- The precondition @n >= 0@ is not checked.
{-# RULES
"integerSquareRoot'/Int" integerSquareRoot' = isqrtInt'
"integerSquareRoot'/Word" integerSquareRoot' = isqrtWord
"integerSquareRoot'/Integer" integerSquareRoot' = isqrtInteger
#-}
{-# INLINE [1] integerSquareRoot' #-}
integerSquareRoot' :: Integral a => a -> a
integerSquareRoot' = isqrtA
-- | For a non-negative input \( n \)
-- calculate its integer square root \( r = \lfloor \sqrt{n} \rfloor \)
-- and remainder \( s = n - r^2 \).
-- Throw an error on negative input.
--
-- >>> integerSquareRootRem 99
-- (9,18)
-- >>> integerSquareRootRem 100
-- (10,0)
-- >>> integerSquareRootRem 101
-- (10,1)
{-# SPECIALISE integerSquareRootRem ::
Int -> (Int, Int),
Word -> (Word, Word),
Integer -> (Integer, Integer),
Natural -> (Natural, Natural)
#-}
integerSquareRootRem :: Integral a => a -> (a, a)
integerSquareRootRem n
| n < 0 = error "integerSquareRootRem: negative argument"
| otherwise = integerSquareRootRem' n
-- | Calculate the integer square root of a non-negative number as well as
-- the difference of that number with the square of that root, that is if
-- @(s,r) = integerSquareRootRem' n@ then @s^2 <= n == s^2+r < (s+1)^2@.
-- The precondition @n >= 0@ is not checked.
{-# RULES
"integerSquareRootRem'/Integer" integerSquareRootRem' = karatsubaSqrt
#-}
{-# INLINE [1] integerSquareRootRem' #-}
integerSquareRootRem' :: Integral a => a -> (a, a)
integerSquareRootRem' n = (s, n - s * s)
where
s = integerSquareRoot' n
-- | Calculate the exact integer square root if it exists,
-- otherwise return 'Nothing'.
--
-- >>> map exactSquareRoot [-100, 99, 100, 101]
-- [Nothing,Nothing,Just 10,Nothing]
{-# SPECIALISE exactSquareRoot :: Int -> Maybe Int,
Word -> Maybe Word,
Integer -> Maybe Integer,
Natural -> Maybe Natural
#-}
exactSquareRoot :: Integral a => a -> Maybe a
exactSquareRoot n
| n >= 0
, isPossibleSquare n
, (r, 0) <- integerSquareRootRem' n = Just r
| otherwise = Nothing
-- | Test whether the argument is a perfect square.
--
-- >>> map isSquare [-100, 99, 100, 101]
-- [False,False,True,False]
{-# SPECIALISE isSquare :: Int -> Bool,
Word -> Bool,
Integer -> Bool,
Natural -> Bool
#-}
isSquare :: Integral a => a -> Bool
isSquare n = n >= 0 && isSquare' n
-- | Test whether the input (a non-negative number) @n@ is a square.
-- The same as 'isSquare', but without the negativity test.
-- Faster if many known positive numbers are tested.
--
-- The precondition @n >= 0@ is not tested, passing negative
-- arguments may cause any kind of havoc.
{-# SPECIALISE isSquare' :: Int -> Bool,
Word -> Bool,
Integer -> Bool,
Natural -> Bool
#-}
isSquare' :: Integral a => a -> Bool
isSquare' n
| isPossibleSquare n
, (_, 0) <- integerSquareRootRem' n = True
| otherwise = False
-- | Test whether a non-negative number may be a square.
-- Non-negativity is not checked, passing negative arguments may
-- cause any kind of havoc.
--
-- First the remainder modulo 256 is checked (that can be calculated
-- easily without division and eliminates about 82% of all numbers).
-- After that, the remainders modulo 9, 25, 7, 11 and 13 are tested
-- to eliminate altogether about 99.436% of all numbers.
{-# SPECIALISE isPossibleSquare :: Int -> Bool,
Word -> Bool,
Integer -> Bool,
Natural -> Bool
#-}
isPossibleSquare :: Integral a => a -> Bool
isPossibleSquare n'
= indexBitSet mask256 (fromInteger (n .&. 255))
&& indexBitSet mask693 (fromInteger (n `rem` 693))
&& indexBitSet mask325 (fromInteger (n `rem` 325))
where
n = toInteger n'
-----------------------------------------------------------------------------
-- Generated by 'Math.NumberTheory.Utils.BitMask.vectorToAddrLiteral'
mask256 :: Ptr Word
mask256 = Ptr "\DC3\STX\ETX\STX\DC2\STX\STX\STX\DC3\STX\STX\STX\DC2\STX\STX\STX\DC2\STX\ETX\STX\DC2\STX\STX\STX\DC2\STX\STX\STX\DC2\STX\STX\STX"#
mask693 :: Ptr Word
mask693 = Ptr "\DC3\STXA\STX0\NUL\STX\EOTI\NUL\STX\t\CAN\NUL\NULB\164\NUL\DC1\EOT\b\STX\NUL@P\128@\NUL\STX\t\128 \SOH\DLE\NUL\SOH\130$\NUL\128\DC4(\NUL\NUL\SOH\DC2\NUL\f\STX\DC4\SOH\NUL \b\NUL\"\NUL\128\EOT`\144\NUL\b\129\NULE\DC2\DLE@\STX\EOT\NUL\129\NUL\t\b\EOT\SOH\194\128\NUL\DLE\EOT\NUL\DLE\NUL\NUL"#
mask325 :: Ptr Word
mask325 = Ptr "\DC3B\SOH&\144\NUL\n!%\140\STXH0\SOH\DC4BJ\b\ENQ\144@\STX(\132\148\DLE\n \131\EOTP\f)!\DC4@\STX\EM\160\DLE\DC2"#
-- -- Make an array indicating whether a remainder is a square remainder.
-- sqRemArray :: Int -> V.Vector Bool
-- sqRemArray md = runST $ do
-- ar <- MV.replicate md False
-- let !stop = (md `quot` 2) + 1
-- fill k
-- | k < stop = MV.unsafeWrite ar ((k*k) `rem` md) True >> fill (k+1)
-- | otherwise = return ()
-- MV.unsafeWrite ar 0 True
-- MV.unsafeWrite ar 1 True
-- fill 2
-- V.unsafeFreeze ar
-- sr256 :: V.Vector Bool
-- sr256 = sqRemArray 256
-- sr693 :: V.Vector Bool
-- sr693 = sqRemArray 693
-- sr325 :: V.Vector Bool
-- sr325 = sqRemArray 325
-----------------------------------------------------------------------------
-- Specialisations for Int, Word, and Integer
-- For @n <= 2^64@, the result of
--
-- > truncate (sqrt $ fromIntegral n)
--
-- is never too small and never more than one too large.
-- The multiplication doesn't overflow for 32 or 64 bit Ints.
isqrtInt' :: Int -> Int
isqrtInt' n
| n < r*r = r-1
| otherwise = r
where
!r = (truncate :: Double -> Int) . sqrt $ fromIntegral n
-- With -O2, that should be translated to the below
{-
isqrtInt' n@(I# i#)
| r# *# r# ># i# = I# (r# -# 1#)
| otherwise = I# r#
where
!r# = double2Int# (sqrtDouble# (int2Double# i#))
-}
-- Same for Word.
isqrtWord :: Word -> Word
isqrtWord n
| n < (r*r)
-- Double interprets values near maxBound as 2^64, we don't have that problem for 32 bits
|| finiteBitSize (0 :: Word) == 64 && r == 4294967296
= r-1
| otherwise = r
where
!r = (fromIntegral :: Int -> Word) . (truncate :: Double -> Int) . sqrt $ fromIntegral n
{-# INLINE isqrtInteger #-}
isqrtInteger :: Integer -> Integer
isqrtInteger = fst . karatsubaSqrt
|