1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
-- |
-- Module: Math.NumberTheory.Roots.Cubes
-- Copyright: (c) 2011 Daniel Fischer, 2016-2020 Andrew Lelechenko
-- Licence: MIT
-- Maintainer: Daniel Fischer <daniel.is.fischer@googlemail.com>
--
-- Functions dealing with cubes. Moderately efficient calculation of integer
-- cube roots and testing for cubeness.
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{- HLINT ignore "Use fewer imports" -}
module Math.NumberTheory.Roots.Cubes
( integerCubeRoot
, integerCubeRoot'
, exactCubeRoot
, isCube
, isCube'
, isPossibleCube
) where
import Data.Bits (finiteBitSize, (.&.))
import GHC.Exts (Int#, Ptr(..), int2Double#, double2Int#, isTrue#, (/##), (**##), (<#))
import Numeric.Natural (Natural)
#ifdef MIN_VERSION_integer_gmp
import GHC.Exts (quotInt#, (*#), (-#))
import GHC.Integer.GMP.Internals (Integer(..), shiftLInteger, shiftRInteger, sizeofBigNat#)
import GHC.Integer.Logarithms (integerLog2#)
#define IS S#
#define IP Jp#
#define bigNatSize sizeofBigNat
#else
import GHC.Exts (minusWord#, timesWord#, quotWord#)
import GHC.Num.BigNat (bigNatSize#)
import GHC.Num.Integer (Integer(..), integerLog2#, integerShiftR#, integerShiftL#)
#endif
import Math.NumberTheory.Utils.BitMask (indexBitSet)
-- | For a given \( n \)
-- calculate its integer cube root \( \lfloor \sqrt[3]{n} \rfloor \).
-- Note that this is not symmetric about 0.
--
-- >>> map integerCubeRoot [7, 8, 9]
-- [1,2,2]
-- >>> map integerCubeRoot [-7, -8, -9]
-- [-2,-2,-3]
{-# SPECIALISE integerCubeRoot :: Int -> Int #-}
{-# SPECIALISE integerCubeRoot :: Word -> Word #-}
{-# SPECIALISE integerCubeRoot :: Integer -> Integer #-}
{-# SPECIALISE integerCubeRoot :: Natural -> Natural #-}
integerCubeRoot :: Integral a => a -> a
integerCubeRoot 0 = 0
integerCubeRoot n
| n > 0 = integerCubeRoot' n
| otherwise =
let m = negate n
r = if m < 0
then negate . fromInteger $ integerCubeRoot' (negate $ fromIntegral n)
else negate (integerCubeRoot' m)
in if r*r*r == n then r else r - 1
-- | Calculate the integer cube root of a nonnegative integer @n@,
-- that is, the largest integer @r@ such that @r^3 <= n@.
-- The precondition @n >= 0@ is not checked.
{-# RULES
"integerCubeRoot'/Int" integerCubeRoot' = cubeRootInt'
"integerCubeRoot'/Word" integerCubeRoot' = cubeRootWord
"integerCubeRoot'/Integer" integerCubeRoot' = cubeRootIgr
#-}
{-# INLINE [1] integerCubeRoot' #-}
integerCubeRoot' :: Integral a => a -> a
integerCubeRoot' 0 = 0
integerCubeRoot' n = newton3 n (approxCuRt n)
-- | Calculate the exact integer cube root if it exists,
-- otherwise return 'Nothing'.
--
-- >>> map exactCubeRoot [-9, -8, -7, 7, 8, 9]
-- [Nothing,Just (-2),Nothing,Nothing,Just 2,Nothing]
{-# SPECIALISE exactCubeRoot :: Int -> Maybe Int #-}
{-# SPECIALISE exactCubeRoot :: Word -> Maybe Word #-}
{-# SPECIALISE exactCubeRoot :: Integer -> Maybe Integer #-}
{-# SPECIALISE exactCubeRoot :: Natural -> Maybe Natural #-}
exactCubeRoot :: Integral a => a -> Maybe a
exactCubeRoot 0 = Just 0
exactCubeRoot n
| n < 0 =
if m < 0
then fmap (negate . fromInteger) $ exactCubeRoot (negate $ fromIntegral n)
else fmap negate (exactCubeRoot m)
| isPossibleCube n && r*r*r == n = Just r
| otherwise = Nothing
where
m = negate n
r = integerCubeRoot' n
-- | Test whether the argument is a perfect cube.
--
-- >>> map isCube [-9, -8, -7, 7, 8, 9]
-- [False,True,False,False,True,False]
{-# SPECIALISE isCube :: Int -> Bool #-}
{-# SPECIALISE isCube :: Word -> Bool #-}
{-# SPECIALISE isCube :: Integer -> Bool #-}
{-# SPECIALISE isCube :: Natural -> Bool #-}
isCube :: Integral a => a -> Bool
isCube 0 = True
isCube n
| n > 0 = isCube' n
| m > 0 = isCube' m
| otherwise = isCube' (negate (fromIntegral n) :: Integer)
where
m = negate n
-- | Test whether a nonnegative integer is a cube.
-- Before 'integerCubeRoot' is calculated, a few tests
-- of remainders modulo small primes weed out most non-cubes.
-- On average, assuming that the majority of inputs aren't cubes,
-- this is much faster than @let r = cubeRoot n in r*r*r == n@.
-- The condition @n >= 0@ is /not/ checked.
{-# SPECIALISE isCube' :: Int -> Bool #-}
{-# SPECIALISE isCube' :: Word -> Bool #-}
{-# SPECIALISE isCube' :: Integer -> Bool #-}
{-# SPECIALISE isCube' :: Natural -> Bool #-}
isCube' :: Integral a => a -> Bool
isCube' !n = isPossibleCube n
&& (r*r*r == n)
where
r = integerCubeRoot' n
-- | Test whether a nonnegative number is possibly a cube.
-- Only about 0.08% of all numbers pass this test.
-- The precondition @n >= 0@ is /not/ checked.
{-# SPECIALISE isPossibleCube :: Int -> Bool #-}
{-# SPECIALISE isPossibleCube :: Word -> Bool #-}
{-# SPECIALISE isPossibleCube :: Integer -> Bool #-}
{-# SPECIALISE isPossibleCube :: Natural -> Bool #-}
isPossibleCube :: Integral a => a -> Bool
isPossibleCube n'
= indexBitSet mask512 (fromInteger (n .&. 511))
&& indexBitSet mask837 (fromInteger (n `rem` 837))
&& indexBitSet mask637 (fromInteger (n `rem` 637))
&& indexBitSet mask703 (fromInteger (n `rem` 703))
where
n = toInteger n'
----------------------------------------------------------------------
-- Utility Functions --
----------------------------------------------------------------------
-- Special case for 'Int', a little faster.
-- For @n <= 2^64@, the truncated 'Double' is never
-- more than one off. Things might overflow for @n@
-- close to @maxBound@, so check for overflow.
cubeRootInt' :: Int -> Int
cubeRootInt' 0 = 0
cubeRootInt' n
| n < c || c < 0 = r-1
| 0 < d && d < n = r+1
| otherwise = r
where
x = fromIntegral n :: Double
r = truncate (x ** (1/3))
c = r*r*r
d = c+3*r*(r+1)
cubeRootWordLimit :: Word
cubeRootWordLimit = if finiteBitSize (0 :: Word) == 64 then 2642245 else 1625
cubeRootWord :: Word -> Word
cubeRootWord 0 = 0
cubeRootWord w
| r > cubeRootWordLimit = cubeRootWordLimit
| w < c = r-1
| c < w && e < w && c < e = r+1
| otherwise = r
where
r = truncate (fromIntegral w ** (1/3) :: Double)
c = r*r*r
d = 3*r*(r+1)
e = c+d
cubeRootIgr :: Integer -> Integer
cubeRootIgr 0 = 0
cubeRootIgr n = newton3 n (approxCuRt n)
{-# SPECIALISE newton3 :: Integer -> Integer -> Integer #-}
newton3 :: Integral a => a -> a -> a
newton3 n a = go (step a)
where
step k = (2*k + n `quot` (k*k)) `quot` 3
go k
| m < k = go m
| otherwise = k
where
m = step k
{-# SPECIALISE approxCuRt :: Integer -> Integer #-}
approxCuRt :: Integral a => a -> a
approxCuRt 0 = 0
approxCuRt n = fromInteger $ appCuRt (fromIntegral n)
-- | approximate cube root, about 50 bits should be correct for large numbers
appCuRt :: Integer -> Integer
appCuRt (IS i#) = case double2Int# (int2Double# i# **## (1.0## /## 3.0##)) of
r# -> IS r#
appCuRt n@(IP bn#)
| isTrue# (bigNatSize# bn# <# thresh#) =
floor (fromInteger n ** (1.0/3.0) :: Double)
| otherwise = case integerLog2# n of
#ifdef MIN_VERSION_integer_gmp
l# -> case (l# `quotInt#` 3#) -# 51# of
h# -> case shiftRInteger n (3# *# h#) of
m -> case floor (fromInteger m ** (1.0/3.0) :: Double) of
r -> shiftLInteger r h#
#else
l# -> case (l# `quotWord#` 3##) `minusWord#` 51## of
h# -> case integerShiftR# n (3## `timesWord#` h#) of
m -> case floor (fromInteger m ** (1.0/3.0) :: Double) of
r -> integerShiftL# r h#
#endif
where
-- threshold for shifting vs. direct fromInteger
-- we shift when we expect more than 256 bits
thresh# :: Int#
thresh# = if finiteBitSize (0 :: Word) == 64 then 5# else 9#
-- There's already handling for negative in integerCubeRoot,
-- but integerCubeRoot' is exported directly too.
appCuRt _ = error "integerCubeRoot': negative argument"
-----------------------------------------------------------------------------
-- Generated by 'Math.NumberTheory.Utils.BitMask.vectorToAddrLiteral'
mask512 :: Ptr Word
mask512 = Ptr "\171\171\170\171\170\171\170\171\171\171\170\171\170\171\170\171\170\171\170\171\170\171\170\171\171\171\170\171\170\171\170\171\170\171\170\171\170\171\170\171\171\171\170\171\170\171\170\171\170\171\170\171\170\171\170\171\171\171\170\171\170\171\170\171"#
mask837 :: Ptr Word
mask837 = Ptr "\ETX\SOH\NUL\b\b@@@\SOH\NUL\NUL\n\NUL0\DLE \NUL\NUL\NUL\EOT\b\EOT\NULP\NUL\NUL\128\ETX\NUL\STX\DLE\NUL\NUL\128@\129\NUL\NUL\NUL\EOT \NUL\160\NUL\NUL\NUL\ENQ\NUL\DLE\b0\NUL\NUL\NUL\ETX\EOT\STX\NUL(\NUL\NUL@\SOH\NUL\SOH\b\NUL\NUL@\160@\NUL\NUL\NUL\STX\DLE\NULp\NUL\NUL\128\STX\NUL\b\EOT\b\NUL\NUL\NUL\SOH\STX\ETX\NUL\DC4\NUL\NUL\160\128\128\NUL\EOT\EOT\NUL \DLE"#
mask637 :: Ptr Word
mask637 = Ptr "\ETX!\NUL\b\EOT\NUL\NUL\STX\SOH@\b\DC4\b\SOH@ \NUL\NUL\DLE\b\NULB\160@\CAN\NUL\STX\SOH\NUL\128@\NUL\DLE\STX\ENQB@\DLE\b\NUL\NUL\EOT\130\128\DLE(\DLE\STX\128@\NUL\NUL \DLE\NUL\134@\129\DLE\NUL\EOT\STX\NUL\NUL\129\NUL \EOT\n\132\NUL \DLE\NUL\NUL\b\EOT\NUL!\DLE"#
mask703 :: Ptr Word
mask703 = Ptr "\ETX\t\NUL\140` \NUL\NUL\DC1\b\DLE\SOH\128\NUL\NUL&@\DLE\NUL\128\NUL\b\b\128\NUL\NUL\SOH!\DLE\DLE\NUL\SOH\f\n\STX`\NUL\ETX\SOH\NUL\f@\160\NUL\NUL\ENQ\STX0\NUL\128\192\NUL\ACK@P0\128\NUL\b\b\132\128\NUL\NUL\SOH\DLE\DLE\NUL\SOH\NUL\b\STXd\NUL\NUL\SOH\128\b\DLE\136\NUL\NUL\EOT\ACK1\NUL\144@"#
-- -- not very discriminating, but cheap, so it's an overall gain
-- cr512 :: V.Vector Bool
-- cr512 = runST $ do
-- ar <- MV.replicate 512 True
-- let note s i
-- | i < 512 = MV.unsafeWrite ar i False >> note s (i+s)
-- | otherwise = return ()
-- note 4 2
-- note 8 4
-- note 32 16
-- note 64 32
-- note 256 128
-- MV.unsafeWrite ar 256 False
-- V.unsafeFreeze ar
-- -- Remainders modulo @3^3 * 31@
-- cubeRes837 :: V.Vector Bool
-- cubeRes837 = runST $ do
-- ar <- MV.replicate 837 False
-- let note 837 = return ()
-- note k = MV.unsafeWrite ar ((k*k*k) `rem` 837) True >> note (k+1)
-- note 0
-- V.unsafeFreeze ar
-- -- Remainders modulo @7^2 * 13@
-- cubeRes637 :: V.Vector Bool
-- cubeRes637 = runST $ do
-- ar <- MV.replicate 637 False
-- let note 637 = return ()
-- note k = MV.unsafeWrite ar ((k*k*k) `rem` 637) True >> note (k+1)
-- note 0
-- V.unsafeFreeze ar
-- -- Remainders modulo @19 * 37@
-- cubeRes703 :: V.Vector Bool
-- cubeRes703 = runST $ do
-- ar <- MV.replicate 703 False
-- let note 703 = return ()
-- note k = MV.unsafeWrite ar ((k*k*k) `rem` 703) True >> note (k+1)
-- note 0
-- V.unsafeFreeze ar
|