File: Cubes.hs

package info (click to toggle)
haskell-integer-roots 1.0.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 264 kB
  • sloc: haskell: 1,591; makefile: 3
file content (290 lines) | stat: -rw-r--r-- 11,098 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
-- |
-- Module:      Math.NumberTheory.Roots.Cubes
-- Copyright:   (c) 2011 Daniel Fischer, 2016-2020 Andrew Lelechenko
-- Licence:     MIT
-- Maintainer:  Daniel Fischer <daniel.is.fischer@googlemail.com>
--
-- Functions dealing with cubes. Moderately efficient calculation of integer
-- cube roots and testing for cubeness.

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP          #-}
{-# LANGUAGE MagicHash    #-}
{- HLINT ignore "Use fewer imports" -}

module Math.NumberTheory.Roots.Cubes
    ( integerCubeRoot
    , integerCubeRoot'
    , exactCubeRoot
    , isCube
    , isCube'
    , isPossibleCube
    ) where

import Data.Bits (finiteBitSize, (.&.))
import GHC.Exts (Int#, Ptr(..), int2Double#, double2Int#, isTrue#, (/##), (**##), (<#))
import Numeric.Natural (Natural)

#ifdef MIN_VERSION_integer_gmp
import GHC.Exts (quotInt#, (*#), (-#))
import GHC.Integer.GMP.Internals (Integer(..), shiftLInteger, shiftRInteger, sizeofBigNat#)
import GHC.Integer.Logarithms (integerLog2#)
#define IS S#
#define IP Jp#
#define bigNatSize sizeofBigNat
#else
import GHC.Exts (minusWord#, timesWord#, quotWord#)
import GHC.Num.BigNat (bigNatSize#)
import GHC.Num.Integer (Integer(..), integerLog2#, integerShiftR#, integerShiftL#)
#endif

import Math.NumberTheory.Utils.BitMask (indexBitSet)

-- | For a given \( n \)
--   calculate its integer cube root \( \lfloor \sqrt[3]{n} \rfloor \).
--   Note that this is not symmetric about 0.
--
-- >>> map integerCubeRoot [7, 8, 9]
-- [1,2,2]
-- >>> map integerCubeRoot [-7, -8, -9]
-- [-2,-2,-3]
{-# SPECIALISE integerCubeRoot :: Int -> Int #-}
{-# SPECIALISE integerCubeRoot :: Word -> Word #-}
{-# SPECIALISE integerCubeRoot :: Integer -> Integer #-}
{-# SPECIALISE integerCubeRoot :: Natural -> Natural #-}
integerCubeRoot :: Integral a => a -> a
integerCubeRoot 0 = 0
integerCubeRoot n
    | n > 0     = integerCubeRoot' n
    | otherwise =
      let m = negate n
          r = if m < 0
                then negate . fromInteger $ integerCubeRoot' (negate $ fromIntegral n)
                else negate (integerCubeRoot' m)
      in if r*r*r == n then r else r - 1

-- | Calculate the integer cube root of a nonnegative integer @n@,
--   that is, the largest integer @r@ such that @r^3 <= n@.
--   The precondition @n >= 0@ is not checked.
{-# RULES
"integerCubeRoot'/Int"     integerCubeRoot' = cubeRootInt'
"integerCubeRoot'/Word"    integerCubeRoot' = cubeRootWord
"integerCubeRoot'/Integer" integerCubeRoot' = cubeRootIgr
  #-}
{-# INLINE [1] integerCubeRoot' #-}
integerCubeRoot' :: Integral a => a -> a
integerCubeRoot' 0 = 0
integerCubeRoot' n = newton3 n (approxCuRt n)

-- | Calculate the exact integer cube root if it exists,
-- otherwise return 'Nothing'.
--
-- >>> map exactCubeRoot [-9, -8, -7, 7, 8, 9]
-- [Nothing,Just (-2),Nothing,Nothing,Just 2,Nothing]
{-# SPECIALISE exactCubeRoot :: Int -> Maybe Int #-}
{-# SPECIALISE exactCubeRoot :: Word -> Maybe Word #-}
{-# SPECIALISE exactCubeRoot :: Integer -> Maybe Integer #-}
{-# SPECIALISE exactCubeRoot :: Natural -> Maybe Natural #-}
exactCubeRoot :: Integral a => a -> Maybe a
exactCubeRoot 0 = Just 0
exactCubeRoot n
    | n < 0     =
      if m < 0
        then fmap (negate . fromInteger) $ exactCubeRoot (negate $ fromIntegral n)
        else fmap negate (exactCubeRoot m)
    | isPossibleCube n && r*r*r == n    = Just r
    | otherwise = Nothing
      where
        m = negate n
        r = integerCubeRoot' n

-- | Test whether the argument is a perfect cube.
--
-- >>> map isCube [-9, -8, -7, 7, 8, 9]
-- [False,True,False,False,True,False]
{-# SPECIALISE isCube :: Int -> Bool #-}
{-# SPECIALISE isCube :: Word -> Bool #-}
{-# SPECIALISE isCube :: Integer -> Bool #-}
{-# SPECIALISE isCube :: Natural -> Bool #-}
isCube :: Integral a => a -> Bool
isCube 0 = True
isCube n
    | n > 0     = isCube' n
    | m > 0     = isCube' m
    | otherwise = isCube' (negate (fromIntegral n) :: Integer)
      where
        m = negate n

-- | Test whether a nonnegative integer is a cube.
--   Before 'integerCubeRoot' is calculated, a few tests
--   of remainders modulo small primes weed out most non-cubes.
--   On average, assuming that the majority of inputs aren't cubes,
--   this is much faster than @let r = cubeRoot n in r*r*r == n@.
--   The condition @n >= 0@ is /not/ checked.
{-# SPECIALISE isCube' :: Int -> Bool #-}
{-# SPECIALISE isCube' :: Word -> Bool #-}
{-# SPECIALISE isCube' :: Integer -> Bool #-}
{-# SPECIALISE isCube' :: Natural -> Bool #-}
isCube' :: Integral a => a -> Bool
isCube' !n = isPossibleCube n
             && (r*r*r == n)
      where
        r    = integerCubeRoot' n

-- | Test whether a nonnegative number is possibly a cube.
--   Only about 0.08% of all numbers pass this test.
--   The precondition @n >= 0@ is /not/ checked.
{-# SPECIALISE isPossibleCube :: Int -> Bool #-}
{-# SPECIALISE isPossibleCube :: Word -> Bool #-}
{-# SPECIALISE isPossibleCube :: Integer -> Bool #-}
{-# SPECIALISE isPossibleCube :: Natural -> Bool #-}
isPossibleCube :: Integral a => a -> Bool
isPossibleCube n'
  =  indexBitSet mask512 (fromInteger (n .&. 511))
  && indexBitSet mask837 (fromInteger (n `rem` 837))
  && indexBitSet mask637 (fromInteger (n `rem` 637))
  && indexBitSet mask703 (fromInteger (n `rem` 703))
  where
    n = toInteger n'

----------------------------------------------------------------------
--                         Utility Functions                        --
----------------------------------------------------------------------

-- Special case for 'Int', a little faster.
-- For @n <= 2^64@, the truncated 'Double' is never
-- more than one off. Things might overflow for @n@
-- close to @maxBound@, so check for overflow.
cubeRootInt' :: Int -> Int
cubeRootInt' 0 = 0
cubeRootInt' n
    | n < c || c < 0    = r-1
    | 0 < d && d < n    = r+1
    | otherwise         = r
      where
        x = fromIntegral n :: Double
        r = truncate (x ** (1/3))
        c = r*r*r
        d = c+3*r*(r+1)

cubeRootWordLimit :: Word
cubeRootWordLimit = if finiteBitSize (0 :: Word) == 64 then 2642245 else 1625

cubeRootWord :: Word -> Word
cubeRootWord 0 = 0
cubeRootWord w
    | r > cubeRootWordLimit = cubeRootWordLimit
    | w < c             = r-1
    | c < w && e < w && c < e  = r+1
    | otherwise         = r
      where
        r = truncate (fromIntegral w ** (1/3) :: Double)
        c = r*r*r
        d = 3*r*(r+1)
        e = c+d

cubeRootIgr :: Integer -> Integer
cubeRootIgr 0 = 0
cubeRootIgr n = newton3 n (approxCuRt n)

{-# SPECIALISE newton3 :: Integer -> Integer -> Integer #-}
newton3 :: Integral a => a -> a -> a
newton3 n a = go (step a)
      where
        step k = (2*k + n `quot` (k*k)) `quot` 3
        go k
            | m < k     = go m
            | otherwise = k
              where
                m = step k

{-# SPECIALISE approxCuRt :: Integer -> Integer #-}
approxCuRt :: Integral a => a -> a
approxCuRt 0 = 0
approxCuRt n = fromInteger $ appCuRt (fromIntegral n)

-- | approximate cube root, about 50 bits should be correct for large numbers
appCuRt :: Integer -> Integer
appCuRt (IS i#) = case double2Int# (int2Double# i# **## (1.0## /## 3.0##)) of
                    r# -> IS r#
appCuRt n@(IP bn#)
    | isTrue# (bigNatSize# bn# <# thresh#) =
          floor (fromInteger n ** (1.0/3.0) :: Double)
    | otherwise = case integerLog2# n of
#ifdef MIN_VERSION_integer_gmp
                    l# -> case (l# `quotInt#` 3#) -# 51# of
                            h# -> case shiftRInteger n (3# *# h#) of
                                    m -> case floor (fromInteger m ** (1.0/3.0) :: Double) of
                                           r -> shiftLInteger r h#
#else
                    l# -> case (l# `quotWord#` 3##) `minusWord#` 51## of
                            h# -> case integerShiftR# n (3## `timesWord#` h#) of
                                    m -> case floor (fromInteger m ** (1.0/3.0) :: Double) of
                                            r -> integerShiftL# r h#
#endif
    where
        -- threshold for shifting vs. direct fromInteger
        -- we shift when we expect more than 256 bits
        thresh# :: Int#
        thresh# = if finiteBitSize (0 :: Word) == 64 then 5# else 9#

-- There's already handling for negative in integerCubeRoot,
-- but integerCubeRoot' is exported directly too.
appCuRt _ = error "integerCubeRoot': negative argument"

-----------------------------------------------------------------------------
-- Generated by 'Math.NumberTheory.Utils.BitMask.vectorToAddrLiteral'

mask512 :: Ptr Word
mask512 = Ptr "\171\171\170\171\170\171\170\171\171\171\170\171\170\171\170\171\170\171\170\171\170\171\170\171\171\171\170\171\170\171\170\171\170\171\170\171\170\171\170\171\171\171\170\171\170\171\170\171\170\171\170\171\170\171\170\171\171\171\170\171\170\171\170\171"#

mask837 :: Ptr Word
mask837 = Ptr "\ETX\SOH\NUL\b\b@@@\SOH\NUL\NUL\n\NUL0\DLE \NUL\NUL\NUL\EOT\b\EOT\NULP\NUL\NUL\128\ETX\NUL\STX\DLE\NUL\NUL\128@\129\NUL\NUL\NUL\EOT \NUL\160\NUL\NUL\NUL\ENQ\NUL\DLE\b0\NUL\NUL\NUL\ETX\EOT\STX\NUL(\NUL\NUL@\SOH\NUL\SOH\b\NUL\NUL@\160@\NUL\NUL\NUL\STX\DLE\NULp\NUL\NUL\128\STX\NUL\b\EOT\b\NUL\NUL\NUL\SOH\STX\ETX\NUL\DC4\NUL\NUL\160\128\128\NUL\EOT\EOT\NUL \DLE"#

mask637 :: Ptr Word
mask637 = Ptr "\ETX!\NUL\b\EOT\NUL\NUL\STX\SOH@\b\DC4\b\SOH@ \NUL\NUL\DLE\b\NULB\160@\CAN\NUL\STX\SOH\NUL\128@\NUL\DLE\STX\ENQB@\DLE\b\NUL\NUL\EOT\130\128\DLE(\DLE\STX\128@\NUL\NUL \DLE\NUL\134@\129\DLE\NUL\EOT\STX\NUL\NUL\129\NUL \EOT\n\132\NUL \DLE\NUL\NUL\b\EOT\NUL!\DLE"#

mask703 :: Ptr Word
mask703 = Ptr "\ETX\t\NUL\140` \NUL\NUL\DC1\b\DLE\SOH\128\NUL\NUL&@\DLE\NUL\128\NUL\b\b\128\NUL\NUL\SOH!\DLE\DLE\NUL\SOH\f\n\STX`\NUL\ETX\SOH\NUL\f@\160\NUL\NUL\ENQ\STX0\NUL\128\192\NUL\ACK@P0\128\NUL\b\b\132\128\NUL\NUL\SOH\DLE\DLE\NUL\SOH\NUL\b\STXd\NUL\NUL\SOH\128\b\DLE\136\NUL\NUL\EOT\ACK1\NUL\144@"#

-- -- not very discriminating, but cheap, so it's an overall gain
-- cr512 :: V.Vector Bool
-- cr512 = runST $ do
--     ar <- MV.replicate 512 True
--     let note s i
--             | i < 512   = MV.unsafeWrite ar i False >> note s (i+s)
--             | otherwise = return ()
--     note 4 2
--     note 8 4
--     note 32 16
--     note 64 32
--     note 256 128
--     MV.unsafeWrite ar 256 False
--     V.unsafeFreeze ar

-- -- Remainders modulo @3^3 * 31@
-- cubeRes837 :: V.Vector Bool
-- cubeRes837 = runST $ do
--     ar <- MV.replicate 837 False
--     let note 837 = return ()
--         note k = MV.unsafeWrite ar ((k*k*k) `rem` 837) True >> note (k+1)
--     note 0
--     V.unsafeFreeze ar

-- -- Remainders modulo @7^2 * 13@
-- cubeRes637 :: V.Vector Bool
-- cubeRes637 = runST $ do
--     ar <- MV.replicate 637 False
--     let note 637 = return ()
--         note k = MV.unsafeWrite ar ((k*k*k) `rem` 637) True >> note (k+1)
--     note 0
--     V.unsafeFreeze ar

-- -- Remainders modulo @19 * 37@
-- cubeRes703 :: V.Vector Bool
-- cubeRes703 = runST $ do
--     ar <- MV.replicate 703 False
--     let note 703 = return ()
--         note k = MV.unsafeWrite ar ((k*k*k) `rem` 703) True >> note (k+1)
--     note 0
--     V.unsafeFreeze ar