File: Tests.hs

package info (click to toggle)
haskell-ixset 1.1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 104 kB
  • sloc: haskell: 743; makefile: 2
file content (279 lines) | stat: -rw-r--r-- 8,970 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
{-# LANGUAGE DeriveDataTypeable, TemplateHaskell, OverlappingInstances, UndecidableInstances, TemplateHaskell, KindSignatures #-}

-- Check that the SYBWC Data instance for IxSet works, by testing
-- that going to and from XML works.

module Data.IxSet.Tests where

import           Control.Monad
import           Control.Exception as E
import           Data.Data         as Data
import           Data.IxSet        as IxSet
import           Data.Map          (Map)
import qualified Data.Map          as Map
import           Data.Maybe
import           Data.Set          (Set)
import qualified Data.Set          as Set
import           System.Random
import           Test.HUnit        (Test,(~:),(@=?), test)
import qualified Test.HUnit        as HU
import           Test.QuickCheck
import qualified Test.QuickCheck   as QC

qccheck :: QC.Testable a => QC.Args -> a -> HU.Test
qccheck args prop =
  HU.TestCase $
    do result <- QC.quickCheckWithResult args prop
       case result of
         (QC.Success {}) -> return ()
         (QC.GaveUp {}) ->
             let ntest = QC.numTests result
             in HU.assertFailure $ "Arguments exhausted after" ++ show ntest ++ (if ntest == 1 then " test." else " tests.")
         (QC.Failure {}) -> HU.assertFailure (QC.reason result)
         (QC.NoExpectedFailure {}) -> HU.assertFailure $ "No Expected Failure"

qctest :: QC.Testable a => a -> HU.Test
qctest = qccheck QC.stdArgs


data Foo
    = Foo String Int
      deriving (Eq, Ord, Show, Data, Typeable)

data FooX
    = Foo1 String Int
    | Foo2 Int
      deriving (Eq, Ord, Show, Data, Typeable)

data NoIdxFoo
    = NoIdxFoo Int
      deriving (Eq, Ord, Show, Data, Typeable)

data BadlyIndexed
    = BadlyIndexed Int
      deriving (Eq, Ord, Show, Data, Typeable)

data MultiIndex
    = MultiIndex String Int Integer (Maybe Int) (Either Bool Char)
    | MultiIndexSubset Int Bool String
      deriving (Eq, Ord, Show, Data, Typeable)

data Triple
    = Triple Int Int Int
      deriving (Eq, Ord, Show, Data, Typeable)

data S
    = S String
      deriving (Eq, Ord, Show, Data, Typeable)

data G a b
    = G a b
      deriving (Eq, Ord, Show, Data, Typeable)


$(inferIxSet "FooXs" ''FooX 'noCalcs [''Int,
                                      ''String
                                      ])

$(inferIxSet "BadlyIndexeds" ''BadlyIndexed 'noCalcs [''String])
$(inferIxSet "MultiIndexed" ''MultiIndex 'noCalcs [''String, ''Int, ''Integer, ''Bool, ''Char])
$(inferIxSet "Triples" ''Triple 'noCalcs [''Int])
$(inferIxSet "Gs" ''G 'noCalcs [''Int])

fooCalcs (Foo s _) = s ++ "bar"
$(inferIxSet "Foos" ''Foo 'fooCalcs [''String, ''Int])


instance Indexable S where
    empty =  ixSet [ ixFun (\(S x) -> [length x])
                   ]
    -- calcs _ = ()

ixSetCheckMethodsOnDefault :: Test
ixSetCheckMethodsOnDefault = "ixSetCheckMethodsOnDefault" ~: test
   [ "size is zero" ~: 0 @=?
     size (IxSet.empty :: Foos)
   , "getOne returns Nothing" ~:
     Nothing @=? getOne (IxSet.empty :: Foos)
   , "getOneOr returns default" ~:
     Foo1 "" 44 @=? getOneOr (Foo1 "" 44) IxSet.empty
   , "toList returns []" ~:
     [] @=? toList (IxSet.empty :: Foos)
   ]

foox_a :: FooX
foox_a = Foo1 "abc" 10
foox_b :: FooX
foox_b = Foo1 "abc" 20
foox_c :: FooX
foox_c = Foo2 10
foox_d :: FooX
foox_d = Foo2 20
foox_e :: FooX
foox_e = Foo2 30

foox_set_abc :: FooXs
foox_set_abc = insert foox_a $ insert foox_b $ insert foox_c $ IxSet.empty
foox_set_cde :: FooXs
foox_set_cde = insert foox_e $ insert foox_d $ insert foox_c $ IxSet.empty

ixSetCheckSetMethods :: Test
ixSetCheckSetMethods = "ixSetCheckSetMethods" ~: test
   [ "size abc is 3" ~: 3 @=?
     size foox_set_abc
   , "size cde is 3" ~: 3 @=?
     size foox_set_cde
   , "getOne returns Nothing" ~:
     Nothing @=? getOne foox_set_abc
   , "getOneOr returns default" ~:
     Foo1 "" 44 @=? getOneOr (Foo1 "" 44) foox_set_abc
   , "toList returns 3 element list" ~:
     3 @=? length (toList foox_set_abc)
   ]

isError :: a -> IO Bool
isError x = (x `seq` return False) `E.catch` \(ErrorCall _) -> return True

badIndexSafeguard :: Test
badIndexSafeguard = "badIndexSafeguard" ~: test
                    [ "check if there is error when no first index on value" ~:
                      isError (size $ insert (BadlyIndexed 123) empty)
                    , "check if indexing with missing index" ~:
                      isError (getOne (foox_set_cde @= True))
                    ]

testTriple :: Test
testTriple = "testTriple" ~: test
             [ "check if we can find element" ~:
               1 @=? size ((insert (Triple 1 2 3) empty)
                           @= (1::Int) @= (2::Int))
             ]


instance Arbitrary Foo where
    arbitrary = liftM2 Foo arbitrary arbitrary

instance (Arbitrary a,Data.Data a, Ord a, Indexable a) =>
    Arbitrary (IxSet a) where
    arbitrary = liftM fromList arbitrary

prop_sizeEqToListLength :: Foos -> Bool
prop_sizeEqToListLength ixset = size ixset == length (toList ixset)

prop_union :: Foos -> Foos -> Bool
prop_union ixset1 ixset2 =
    toSet (ixset1 `union` ixset2) == toSet ixset1 `Set.union` toSet ixset2

prop_intersection :: Foos -> Foos -> Bool
prop_intersection ixset1 ixset2 =
    toSet (ixset1 `intersection` ixset2) ==
          toSet ixset1 `Set.intersection` toSet ixset2

prop_opers :: Foos -> Int -> Bool
prop_opers ixset intidx =
    and [ (lt `union` eq)            == lteq
        , (gt `union` eq)            == gteq
           -- this works for Foo as an Int field is in every Foo value
        , (gt `union` eq `union` lt) == ixset
--        , (neq `intersection` eq)    == empty
        ]
    where
--      neq  = ixset @/= intidx
      eq   = ixset @=  intidx
      lt   = ixset @<  intidx
      gt   = ixset @>  intidx
      lteq = ixset @<= intidx
      gteq = ixset @>= intidx

prop_sureelem :: Foos -> Foo -> Bool
prop_sureelem ixset foo@(Foo string intidx) =
    not (IxSet.null eq) &&
    not (IxSet.null lteq) &&
    not (IxSet.null gteq)
    where
      ixset' = insert foo ixset
      eq = ixset' @= intidx
      lteq = ixset' @<= intidx
      gteq = ixset' @>= intidx

prop_ranges :: Foos -> Int -> Int -> Bool
prop_ranges ixset intidx1 intidx2 =
    ((ixset @>< (intidx1,intidx2)) == (gt1 &&& lt2)) &&
    ((ixset @>=< (intidx1,intidx2)) == ((gt1 ||| eq1) &&& lt2)) &&
    ((ixset @><= (intidx1,intidx2)) == (gt1 &&& (lt2 ||| eq2))) &&
    ((ixset @>=<= (intidx1,intidx2)) == ((gt1 ||| eq1) &&& (lt2 ||| eq2)))
    where
      eq1 = ixset @= intidx1
      lt1 = ixset @< intidx1
      gt1 = ixset @> intidx1
      eq2 = ixset @= intidx2
      lt2 = ixset @< intidx2
      gt2 = ixset @> intidx2


prop_any :: Foos -> [Int] -> Bool
prop_any ixset idxs =
    (ixset @+ idxs) == foldr union empty (map ((@=) ixset) idxs)

prop_all :: Foos -> [Int] -> Bool
prop_all ixset idxs =
    (ixset @* idxs) == foldr intersection ixset (map ((@=) ixset) idxs)

funSet :: IxSet S
funSet = IxSet.fromList [S "", S "abc", S "def", S "abcde"]

funIndexes :: Test
funIndexes = "funIndexes" ~: test
   [ "has zero length element" ~: 1 @=?
     size (funSet @= (0 :: Int))
   , "has two lengh 3 elements" ~: 2 @=?
     size (funSet @= (3 :: Int))
   , "has three lengh [3;7] elements" ~: 3 @=?
     size (funSet @>=<= (3 :: Int, 7 :: Int))
   ]

allTests :: [Test]
allTests =
    [ ixSetCheckMethodsOnDefault
    , ixSetCheckSetMethods
    , badIndexSafeguard
    , test (True @=? findElement 1 1)
    , testTriple
    , funIndexes
    , "prop_sizeEqToListLength" ~: qctest prop_sizeEqToListLength
    , "prop_union"              ~: qctest prop_union
    , "prop_union"              ~: qctest prop_intersection
    , "prop_opers"              ~: qctest prop_opers
    , "prop_sureelem"           ~: qctest prop_sureelem
    , "prop_ranges"             ~: qctest prop_ranges
    , "prop_any"                ~: qctest prop_any
    , "prop_all"                ~: qctest prop_all
    ]



bigSet :: Int -> MultiIndexed
bigSet n = fromList $
    [ MultiIndex string int integer maybe_int either_bool_char |
      string <- ["abc", "def", "ghi", "jkl"],
      int <- [1..n],
      integer <- [10000..10010],
      maybe_int <- [Nothing, Just 5, Just 6],
      either_bool_char <- [Left True, Left False, Right 'A', Right 'B']] ++
    [ MultiIndexSubset int bool string |
      string <- ["abc", "def", "ghi"],
      int <- [1..n],
      bool <- [True, False]]

findElementX :: MultiIndexed -> Int -> Bool
findElementX set n = isJust $ getOne (set @+ ["abc","def","ghi"]
                                      @>=<= (10000 :: Integer,10010 :: Integer)
                                      @= (True :: Bool)
                                      @= (n `div` n)
                                      @= "abc"
                                      @= (10000 :: Integer)
                                      @= (5 :: Int))

findElement :: Int -> Int -> Bool
findElement n m = all id ([findElementX set k | k <- [1..n]])
    where set = bigSet m