File: Generic.hs

package info (click to toggle)
haskell-json 0.11-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 308 kB
  • sloc: haskell: 1,517; makefile: 15
file content (196 lines) | stat: -rw-r--r-- 7,939 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
{-# LANGUAGE PatternGuards #-}
-- | JSON serializer and deserializer using Data.Generics.
-- The functions here handle algebraic data types and primitive types.
-- It uses the same representation as "Text.JSON" for "Prelude" types.
module Text.JSON.Generic 
    ( module Text.JSON
    , Data
    , Typeable
    , toJSON
    , fromJSON
    , encodeJSON
    , decodeJSON

    , toJSON_generic
    , fromJSON_generic
    ) where

import Control.Monad.State
import Text.JSON
import Text.JSON.String ( runGetJSON )
import Data.Generics
import Data.Word
import Data.Int

import qualified Data.ByteString.Char8 as S
import qualified Data.ByteString.Lazy.Char8 as L
import qualified Data.IntSet as I
-- FIXME: The JSON library treats this specially, needs ext2Q
-- import qualified Data.Map as M

type T a = a -> JSValue

-- |Convert anything to a JSON value.
toJSON :: (Data a) => a -> JSValue
toJSON = toJSON_generic
         `ext1Q` jList
         -- Use the standard encoding for all base types.
         `extQ` (showJSON :: T Integer)
         `extQ` (showJSON :: T Int)
         `extQ` (showJSON :: T Word8)
         `extQ` (showJSON :: T Word16)
         `extQ` (showJSON :: T Word32)
         `extQ` (showJSON :: T Word64)
         `extQ` (showJSON :: T Int8)
         `extQ` (showJSON :: T Int16)
         `extQ` (showJSON :: T Int32)
         `extQ` (showJSON :: T Int64)
         `extQ` (showJSON :: T Double)
         `extQ` (showJSON :: T Float)
         `extQ` (showJSON :: T Char)
         `extQ` (showJSON :: T String)
         -- Bool has a special encoding.
         `extQ` (showJSON :: T Bool)
         `extQ` (showJSON :: T ())
         `extQ` (showJSON :: T Ordering)
         -- More special cases.
         `extQ` (showJSON :: T I.IntSet)
         `extQ` (showJSON :: T S.ByteString)
         `extQ` (showJSON :: T L.ByteString)
  where
        -- Lists are simply coded as arrays.
        jList vs = JSArray $ map toJSON vs


toJSON_generic :: (Data a) => a -> JSValue
toJSON_generic = generic
  where
        -- Generic encoding of an algebraic data type.
        --   No constructor, so it must be an error value.  Code it anyway as JSNull.
        --   Elide a single constructor and just code the arguments.
        --   For multiple constructors, make an object with a field name that is the
        --   constructor (except lower case) and the data is the arguments encoded.
        generic a =
            case dataTypeRep (dataTypeOf a) of
                AlgRep []  -> JSNull
                AlgRep [c] -> encodeArgs c (gmapQ toJSON a)
                AlgRep _   -> encodeConstr (toConstr a) (gmapQ toJSON a)
                rep        -> err (dataTypeOf a) rep
           where
              err dt r = error $ "toJSON: not AlgRep " ++ show r ++ "(" ++ show dt ++ ")"
        -- Encode nullary constructor as a string.
        -- Encode non-nullary constructors as an object with the constructor
        -- name as the single field and the arguments as the value.
        -- Use an array if the are no field names, but elide singleton arrays,
        -- and use an object if there are field names.
        encodeConstr c [] = JSString $ toJSString $ constrString c
        encodeConstr c as = jsObject [(constrString c, encodeArgs c as)]

        constrString = showConstr

        encodeArgs c = encodeArgs' (constrFields c)
        encodeArgs' [] [j] = j
        encodeArgs' [] js  = JSArray js
        encodeArgs' ns js  = jsObject $ zip (map mungeField ns) js

        -- Skip leading '_' in field name so we can use keywords etc. as field names.
        mungeField ('_':cs) = cs
        mungeField cs = cs

        jsObject :: [(String, JSValue)] -> JSValue
        jsObject = JSObject . toJSObject


type F a = Result a

-- |Convert a JSON value to anything (fails if the types do not match).
fromJSON :: (Data a) => JSValue -> Result a
fromJSON j = fromJSON_generic j
             `ext1R` jList

             `extR` (value :: F Integer)
             `extR` (value :: F Int)
             `extR` (value :: F Word8)
             `extR` (value :: F Word16)
             `extR` (value :: F Word32)
             `extR` (value :: F Word64)
             `extR` (value :: F Int8)
             `extR` (value :: F Int16)
             `extR` (value :: F Int32)
             `extR` (value :: F Int64)
             `extR` (value :: F Double)
             `extR` (value :: F Float)
             `extR` (value :: F Char)
             `extR` (value :: F String)

             `extR` (value :: F Bool)
             `extR` (value :: F ())
             `extR` (value :: F Ordering)

             `extR` (value :: F I.IntSet)
             `extR` (value :: F S.ByteString)
             `extR` (value :: F L.ByteString)
  where value :: (JSON a) => Result a
        value = readJSON j

        jList :: (Data e) => Result [e]
        jList = case j of
                JSArray js -> mapM fromJSON js
                _ -> Error $ "fromJSON: Prelude.[] bad data: " ++ show j



fromJSON_generic :: (Data a) => JSValue -> Result a
fromJSON_generic j = generic
  where
        typ = dataTypeOf $ resType generic
        generic = case dataTypeRep typ of
                      AlgRep []  -> case j of JSNull -> return (error "Empty type"); _ -> Error $ "fromJSON: no-constr bad data"
                      AlgRep [_] -> decodeArgs (indexConstr typ 1) j
                      AlgRep _   -> do (c, j') <- getConstr typ j; decodeArgs c j'
                      rep        -> Error $ "fromJSON: " ++ show rep ++ "(" ++ show typ ++ ")"
        getConstr t (JSObject o) | [(s, j')] <- fromJSObject o = do c <- readConstr' t s; return (c, j')
        getConstr t (JSString js) = do c <- readConstr' t (fromJSString js); return (c, JSNull) -- handle nullare constructor
        getConstr _ _ = Error "fromJSON: bad constructor encoding"
        readConstr' t s =
          maybe (Error $ "fromJSON: unknown constructor: " ++ s ++ " " ++ show t)
                return $ readConstr t s

        decodeArgs c = decodeArgs' (numConstrArgs (resType generic) c) c (constrFields c)
        decodeArgs' 0 c  _       JSNull               = construct c []   -- nullary constructor
        decodeArgs' 1 c []       jd                   = construct c [jd] -- unary constructor
        decodeArgs' n c []       (JSArray js) | n > 1 = construct c js   -- no field names
        -- FIXME? We could allow reading an array into a constructor with field names.
        decodeArgs' _ c fs@(_:_) (JSObject o)         = selectFields (fromJSObject o) fs >>= construct c -- field names
        decodeArgs' _ c _        jd                   = Error $ "fromJSON: bad decodeArgs data " ++ show (c, jd)

        -- Build the value by stepping through the list of subparts.
        construct c = evalStateT $ fromConstrM f c
          where f :: (Data a) => StateT [JSValue] Result a
                f = do js <- get; case js of [] -> lift $ Error "construct: empty list"; j' : js' -> do put js'; lift $ fromJSON j'

        -- Select the named fields from a JSON object.  FIXME? Should this use a map?
        selectFields fjs = mapM sel
          where sel f = maybe (Error $ "fromJSON: field does not exist " ++ f) Ok $ lookup f fjs

        -- Count how many arguments a constructor has.  The value x is used to determine what type the constructor returns.
        numConstrArgs :: (Data a) => a -> Constr -> Int
        numConstrArgs x c = execState (fromConstrM f c `asTypeOf` return x) 0
          where f = do modify (+1); return undefined

        resType :: Result a -> a
        resType _ = error "resType"

-- |Encode a value as a string.
encodeJSON :: (Data a) => a -> String
encodeJSON x = showJSValue (toJSON x) ""

-- |Decode a string as a value.
decodeJSON :: (Data a) => String -> a
decodeJSON s =
    case runGetJSON readJSValue s of
    Left msg -> error msg
    Right j ->
        case fromJSON j of
        Error msg -> error msg
        Ok x -> x