File: Pong.hs

package info (click to toggle)
haskell-lens 5.3.5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,060 kB
  • sloc: haskell: 16,249; ansic: 20; makefile: 8
file content (250 lines) | stat: -rw-r--r-- 6,730 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
{-# LANGUAGE TemplateHaskell, Rank2Types, NoMonomorphismRestriction #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Main
-- Copyright   :  (C) 2012 Edward Kmett, Niklas Haas
-- License     :  BSD-style (see the file LICENSE)
-- Maintainer  :  Edward Kmett <ekmett@gmail.com>
-- Stability   :  provisional
-- Portability :  TH, Rank2, NoMonomorphismRestriction
--
-- A simple game of pong using gloss.
-----------------------------------------------------------------------------
module Main where

import Control.Lens hiding ((:>), at)
import Control.Monad.State (State, execState, get)
import Control.Monad (when)

import Data.Set (Set, empty)
import Data.Stream.Infinite (Stream(..))

import Graphics.Gloss hiding (display)
import qualified Graphics.Gloss.Data.Point.Arithmetic as Pt
import Graphics.Gloss.Interface.Pure.Game

import System.Random (randomRs, newStdGen)

-- Some global constants

gameSize :: Float
gameSize        = 300

windowWidth, windowHeight :: Int
windowWidth     = 800
windowHeight    = 600

ballRadius, speedIncrease, losingAccuracy, winningAccuracy,
  initialSpeed, paddleWidth, paddleHeight, paddleSpeed :: Float
ballRadius      = 0.02
speedIncrease   = 1.2
losingAccuracy  = 0.9
winningAccuracy = 0.1
initialSpeed    = 0.6
paddleWidth     = 0.02
paddleHeight    = 0.3
paddleSpeed     = 1

textSize :: Float
textSize        = 0.001

-- Pure data type for representing the game state

data Pong = Pong
  { _ballPos   :: Point
  , _ballSpeed :: Vector
  , _paddle1   :: Float
  , _paddle2   :: Float
  , _score     :: (Int, Int)
  , _vectors   :: Stream Vector

  -- Since gloss doesn't cover this, we store the set of pressed keys
  , _keys      :: Set Key
  }

-- Some nice lenses to go with it
makeLenses ''Pong

-- Renamed tuple lenses for enhanced clarity with points/vectors
_x :: Field1 s t a b => Lens s t a b
_x = _1

_y :: Field2 s t a b => Lens s t a b
_y = _2

initial :: Pong
initial = Pong (0, 0) (0, 0) 0 0 (0, 0) (return (0, 0)) empty

-- Calculate the y position at which the ball will next hit (on player2's side)
hitPos :: Point -> Vector -> Float
hitPos (x,y) (u,v) = ypos
  where
    xdist = if u >= 0 then 1 - x else 3 + x
    time  = xdist / abs u
    ydist = v * time
    ypos  = bounce (y + ydist)
    o     = 1 - ballRadius

    -- Calculate bounces iteratively
    bounce n
      | n >  o    = bounce (  2 *o - n)
      | n < -o    = bounce ((-2)*o - n)
      | otherwise = n

-- Difficulty function
accuracy :: Pong -> Float
accuracy p = g . f . fromIntegral $ p^.score._1 - p^.score._2
  where
    -- Scaling function
    f x = 0.04 * x + 0.5
    -- Clamping function
    g = min losingAccuracy . max winningAccuracy

-- Game update logic

update :: Float -> Pong -> Pong
update time = execState $ do
  updatePaddles time
  updateBall time
  checkBounds

-- Move the ball by adding its current speed
updateBall :: Float -> State Pong ()
updateBall time = do
  (u, v) <- use ballSpeed
  ballPos %= (Pt.+ (time * u, time * v))

  -- Make sure it doesn't leave the playing area
  ballPos.both %= clamp ballRadius

-- Update the paddles
updatePaddles :: Float -> State Pong ()
updatePaddles time = do
  p <- get

  let paddleMovement = time * paddleSpeed
      keyPressed key = p^.keys.contains (SpecialKey key)

  -- Update the player's paddle based on keys
  when (keyPressed KeyUp)   $ paddle1 += paddleMovement
  when (keyPressed KeyDown) $ paddle1 -= paddleMovement

  -- Calculate the optimal position
  let optimal = hitPos (p^.ballPos) (p^.ballSpeed)
      acc     = accuracy p
      target  = optimal * acc + (p^.ballPos._y) * (1 - acc)
      dist    = target - p^.paddle2

  -- Move the CPU's paddle towards this optimal position as needed
  when (abs dist > paddleHeight/3) $
    case compare dist 0 of
      GT -> paddle2 += paddleMovement
      LT -> paddle2 -= paddleMovement
      _  -> return ()

  -- Make sure both paddles don't leave the playing area
  paddle1 %= clamp (paddleHeight/2)
  paddle2 %= clamp (paddleHeight/2)

-- Clamp to the region (-1, 1) but with padding
clamp :: Float -> Float -> Float
clamp pad = max (pad - 1) . min (1 - pad)

-- Check for collisions and/or scores
checkBounds :: State Pong ()
checkBounds = do
  p <- get
  let (x,y) = p^.ballPos

  -- Check for collisions with the top or bottom
  when (abs y >= edge) $
    ballSpeed._y %= negate

  -- Check for collisions with paddles
  let check paddle other
        | y >= p^.paddle - paddleHeight/2 && y <= p^.paddle + paddleHeight/2 = do
            ballSpeed._x   %= negate
            ballSpeed._y   += 3*(y - p^.paddle) -- add english
            ballSpeed.both *= speedIncrease
        | otherwise = do
          score.other += 1
          reset

  when (x >=  edge) $ check paddle2 _1
  when (x <= -edge) $ check paddle1 _2

  where
    edge = 1 - ballRadius

-- Reset the game
reset :: State Pong ()
reset = do
  ballPos .= (0, 0)
  ballSpeed <~ nextSpeed

-- Retrieve a speed from the list, dropping it in the process
nextSpeed :: State Pong Vector
nextSpeed = do
  v:>vs <- use vectors
  vectors .= vs
  return v

-- Drawing a pong state to the screen

draw :: Pong -> Picture
draw p = scale gameSize gameSize $ Pictures
  [ drawBall   `at` p^.ballPos
  , drawPaddle `at` (-paddleX, p^.paddle1)
  , drawPaddle `at` ( paddleX, p^.paddle2)

  -- Score and playing field
  , drawScore (p^.score) `at` (-0.1, 0.85)
  , rectangleWire 2 2
  ]
  where
    paddleX = 1 + paddleWidth/2
    po `at` (x,y) = translate x y po; infixr 1 `at`

drawPaddle :: Picture
drawPaddle = rectangleSolid paddleWidth paddleHeight

drawBall :: Picture
drawBall = circleSolid ballRadius

drawScore :: (Int, Int) -> Picture
drawScore (x, y) = scale textSize textSize . text $ show x ++ " " ++ show y

-- Handle input by simply updating the keys set

handle :: Event -> Pong -> Pong
handle (EventKey k s _ _) = keys.contains k .~ (s == Down)
handle _ = id

-- The main program action

main :: IO ()
main = do
  v:>vs <- startingSpeeds
  let world = ballSpeed .~ v $ vectors .~ vs $ initial
  play display backColor fps world draw handle update

  where
    display   = InWindow "Pong!" (windowWidth, windowHeight) (200, 200)
    backColor = white
    fps       = 120

-- Generate the random list of starting speeds

startingSpeeds :: IO (Stream Vector)
startingSpeeds = do
  rs <- randomRs (-initialSpeed, initialSpeed) <$> newStdGen
  return . listToStream . interleave $ filter ((> 0.2) . abs) rs

  where
    interleave :: [a] -> [(a,a)]
    interleave (x:y:xs) = (x,y) : interleave xs
    interleave _        = []

    -- Assumes the list is infinite.
    listToStream :: [a] -> Stream a
    listToStream = foldr (:>) (error "Finite list")