File: Logic.hs

package info (click to toggle)
haskell-logict 0.8.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 140 kB
  • sloc: haskell: 756; makefile: 2
file content (561 lines) | stat: -rw-r--r-- 18,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
-------------------------------------------------------------------------
-- |
-- Module      : Control.Monad.Logic
-- Copyright   : (c) 2007-2014 Dan Doel,
--               (c) 2011-2013 Edward Kmett,
--               (c) 2014      Roman Cheplyaka,
--               (c) 2020-2021 Andrew Lelechenko,
--               (c) 2020-2021 Kevin Quick
-- License     : BSD3
-- Maintainer  : Andrew Lelechenko <andrew.lelechenko@gmail.com>
--
-- Adapted from the paper
-- <http://okmij.org/ftp/papers/LogicT.pdf Backtracking, Interleaving, and Terminating Monad Transformers>
-- by Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, Amr Sabry.
-- Note that the paper uses 'MonadPlus' vocabulary
-- ('mzero' and 'mplus'),
-- while examples below prefer 'empty' and '<|>'
-- from 'Alternative'.
-------------------------------------------------------------------------

{-# LANGUAGE CPP                   #-}
{-# LANGUAGE DeriveFoldable        #-}
{-# LANGUAGE DeriveFunctor         #-}
{-# LANGUAGE DeriveTraversable     #-}
{-# LANGUAGE FlexibleInstances     #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes            #-}
{-# LANGUAGE UndecidableInstances  #-}

#if __GLASGOW_HASKELL__ >= 704
{-# LANGUAGE Safe #-}
#endif

module Control.Monad.Logic (
    module Control.Monad.Logic.Class,
    -- * The Logic monad
    Logic,
    logic,
    runLogic,
    observe,
    observeMany,
    observeAll,
    -- * The LogicT monad transformer
    LogicT(..),
    runLogicT,
    observeT,
    observeManyT,
    observeAllT,
    fromLogicT,
    fromLogicTWith,
    hoistLogicT,
    embedLogicT
  ) where

import Prelude (error, (-))

import Control.Applicative (Alternative(..), Applicative, liftA2, pure, (<*>))
import Control.Monad (join, MonadPlus(..), liftM, Monad(..), fail)
import qualified Control.Monad.Fail as Fail
import Control.Monad.Identity (Identity(..))
import Control.Monad.IO.Class (MonadIO(..))
import Control.Monad.Trans (MonadTrans(..))
#if MIN_VERSION_base(4,8,0)
import Control.Monad.Zip (MonadZip (..))
#endif

import Control.Monad.Reader.Class (MonadReader(..))
import Control.Monad.State.Class (MonadState(..))
import Control.Monad.Error.Class (MonadError(..))

#if MIN_VERSION_base(4,9,0)
import Data.Semigroup (Semigroup (..))
#endif

import Data.Bool (otherwise)
import Data.Eq ((==))
import qualified Data.Foldable as F
import Data.Function (($), (.), const)
import Data.Functor (Functor(..), (<$>))
import Data.Int
import qualified Data.List as L
import Data.Maybe (Maybe(..))
import Data.Monoid (Monoid (..))
import Data.Ord ((<=))
import qualified Data.Traversable as T

import Control.Monad.Logic.Class

-------------------------------------------------------------------------
-- | A monad transformer for performing backtracking computations
-- layered over another monad @m@.
--
-- When @m@ is 'Identity', 'LogicT' @m@ becomes isomorphic to a list
-- (see 'Logic'). Thus 'LogicT' @m@ for non-trivial @m@ can be imagined
-- as a list, pattern matching on which causes monadic effects.
--
-- @since 0.2
newtype LogicT m a =
    LogicT { unLogicT :: forall r. (a -> m r -> m r) -> m r -> m r }

-------------------------------------------------------------------------
-- | Extracts the first result from a 'LogicT' computation,
-- failing if there are no results at all.
--
-- @since 0.2
#if !MIN_VERSION_base(4,13,0)
observeT :: Monad m => LogicT m a -> m a
#else
observeT :: Fail.MonadFail m => LogicT m a -> m a
#endif
observeT lt = unLogicT lt (const . return) (fail "No answer.")

-------------------------------------------------------------------------
-- | Extracts all results from a 'LogicT' computation, unless blocked by the
-- underlying monad.
--
-- For example, given
--
-- >>> let nats = pure 0 <|> fmap (+ 1) nats
--
-- some monads (like 'Identity', 'Control.Monad.Reader.Reader',
-- 'Control.Monad.Writer.Writer', and 'Control.Monad.State.State')
-- will be productive:
--
-- >>> take 5 $ runIdentity (observeAllT nats)
-- [0,1,2,3,4]
--
-- but others (like 'Control.Monad.Except.ExceptT',
-- and 'Control.Monad.Cont.ContT') will not:
--
-- >>> take 20 <$> runExcept (observeAllT nats)
--
-- In general, if the underlying monad manages control flow then
-- 'observeAllT' may be unproductive under infinite branching,
-- and 'observeManyT' should be used instead.
--
-- @since 0.2
observeAllT :: Applicative m => LogicT m a -> m [a]
observeAllT m = unLogicT m (fmap . (:)) (pure [])

-------------------------------------------------------------------------
-- | Extracts up to a given number of results from a 'LogicT' computation.
--
-- @since 0.2
observeManyT :: Monad m => Int -> LogicT m a -> m [a]
observeManyT n m
    | n <= 0 = return []
    | n == 1 = unLogicT m (\a _ -> return [a]) (return [])
    | otherwise = unLogicT (msplit m) sk (return [])
 where
 sk Nothing _ = return []
 sk (Just (a, m')) _ = (a:) `liftM` observeManyT (n-1) m'

-------------------------------------------------------------------------
-- | Runs a 'LogicT' computation with the specified initial success and
-- failure continuations.
--
-- The second argument ("success continuation") takes one result of
-- the 'LogicT' computation and the monad to run for any subsequent
-- matches.
--
-- The third argument ("failure continuation") is called when the
-- 'LogicT' cannot produce any more results.
--
-- For example:
--
-- >>> yieldWords = foldr ((<|>) . pure) empty
-- >>> showEach wrd nxt = putStrLn wrd >> nxt
-- >>> runLogicT (yieldWords ["foo", "bar"]) showEach (putStrLn "none!")
-- foo
-- bar
-- none!
-- >>> runLogicT (yieldWords []) showEach (putStrLn "none!")
-- none!
-- >>> showFirst wrd _ = putStrLn wrd
-- >>> runLogicT (yieldWords ["foo", "bar"]) showFirst (putStrLn "none!")
-- foo
--
-- @since 0.2
runLogicT :: LogicT m a -> (a -> m r -> m r) -> m r -> m r
runLogicT (LogicT r) = r

-- | Convert from 'LogicT' to an arbitrary logic-like monad transformer,
-- such as <https://hackage.haskell.org/package/list-t list-t>
-- or <https://hackage.haskell.org/package/logict-sequence logict-sequence>
--
-- For example, to show a representation of the structure of a `LogicT`
-- computation, @l@, over a data-like `Monad` (such as @[]@,
-- @Data.Sequence.Seq@, etc.), you could write
--
-- @
-- import ListT (ListT)
--
-- 'show' $ fromLogicT @ListT l
-- @
--
-- @since 0.8.0.0
#if MIN_VERSION_base(4,8,0)
fromLogicT :: (Alternative (t m), MonadTrans t, Monad m, Monad (t m))
  => LogicT m a -> t m a
#else
fromLogicT :: (Alternative (t m), MonadTrans t, Applicative m, Monad m, Monad (t m))
  => LogicT m a -> t m a
#endif
fromLogicT = fromLogicTWith lift

-- | Convert from @'LogicT' m@ to an arbitrary logic-like monad,
-- such as @[]@.
--
-- Examples:
--
-- @
-- 'fromLogicT' = fromLogicTWith d
-- 'hoistLogicT' f = fromLogicTWith ('lift' . f)
-- 'embedLogicT' f = 'fromLogicTWith' f
-- @
--
-- The first argument should be a
-- <https://hackage.haskell.org/package/mmorph/docs/Control-Monad-Morph.html monad morphism>.
-- to produce sensible results.
--
-- @since 0.8.0.0
fromLogicTWith :: (Applicative m, Monad n, Alternative n)
  => (forall x. m x -> n x) -> LogicT m a -> n a
fromLogicTWith p (LogicT f) = join . p $
  f (\a v -> pure (pure a <|> join (p v))) (pure empty)

-- | Convert a 'LogicT' computation from one underlying monad to another.
-- For example,
--
-- @
-- hoistLogicT lift :: LogicT m a -> LogicT (StateT m) a
-- @
--
-- The first argument should be a
-- <https://hackage.haskell.org/package/mmorph/docs/Control-Monad-Morph.html monad morphism>.
-- to produce sensible results.
--
-- @since 0.8.0.0
hoistLogicT :: (Applicative m, Monad n) => (forall x. m x -> n x) -> LogicT m a -> LogicT n a
hoistLogicT f = fromLogicTWith (lift . f)

-- | Convert a 'LogicT' computation from one underlying monad to another.
--
-- The first argument should be a
-- <https://hackage.haskell.org/package/mmorph/docs/Control-Monad-Morph.html monad morphism>.
-- to produce sensible results.
--
-- @since 0.8.0.0
embedLogicT :: Applicative m => (forall a. m a -> LogicT n a) -> LogicT m b -> LogicT n b
embedLogicT f = fromLogicTWith f

-------------------------------------------------------------------------
-- | The basic 'Logic' monad, for performing backtracking computations
-- returning values (e.g. 'Logic' @a@ will return values of type @a@).
--
-- __Technical perspective.__
-- 'Logic' is a
-- <http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html Boehm-Berarducci encoding>
-- of lists. Speaking plainly, its type is identical (up to 'Identity' wrappers)
-- to 'foldr' applied to a given list. And this list itself can be reconstructed
-- by supplying @(:)@ and @[]@.
--
-- > import Data.Functor.Identity
-- >
-- > fromList :: [a] -> Logic a
-- > fromList xs = LogicT $ \cons nil -> foldr cons nil xs
-- >
-- > toList :: Logic a -> [a]
-- > toList (LogicT fld) = runIdentity $ fld (\x (Identity xs) -> Identity (x : xs)) (Identity [])
--
-- Here is a systematic derivation of the isomorphism. We start with observing
-- that @[a]@ is isomorphic to a fix point of a non-recursive
-- base algebra @Fix@ (@ListF@ @a@):
--
-- > newtype Fix f = Fix (f (Fix f))
-- > data ListF a r = ConsF a r | NilF deriving (Functor)
-- >
-- > cata :: Functor f => (f r -> r) -> Fix f -> r
-- > cata f = go where go (Fix x) = f (fmap go x)
-- >
-- > from :: [a] -> Fix (ListF a)
-- > from = foldr (\a acc -> Fix (ConsF a acc)) (Fix NilF)
-- >
-- > to :: Fix (ListF a) -> [a]
-- > to = cata (\case ConsF a r -> a : r; NilF -> [])
--
-- Further, @Fix@ (@ListF@ @a@) is isomorphic to Boehm-Berarducci encoding @ListC@ @a@:
--
-- > newtype ListC a = ListC (forall r. (ListF a r -> r) -> r)
-- >
-- > from :: Fix (ListF a) -> ListC a
-- > from xs = ListC (\f -> cata f xs)
-- >
-- > to :: ListC a -> Fix (ListF a)
-- > to (ListC f) = f Fix
--
-- Finally, @ListF@ @a@ @r@ → @r@ is isomorphic to a pair (@a@ → @r@ → @r@, @r@),
-- so @ListC@ is isomorphic to the 'Logic' type modulo 'Identity' wrappers:
--
-- > newtype Logic a = Logic (forall r. (a -> r -> r) -> r -> r)
--
-- And wrapping every occurence of @r@ into @m@ gives us 'LogicT':
--
-- > newtype LogicT m a = Logic (forall r. (a -> m r -> m r) -> m r -> m r)
--
-- @since 0.5.0
type Logic = LogicT Identity

-------------------------------------------------------------------------
-- | A smart constructor for 'Logic' computations.
--
-- @since 0.5.0
logic :: (forall r. (a -> r -> r) -> r -> r) -> Logic a
logic f = LogicT $ \k -> Identity .
                         f (\a -> runIdentity . k a . Identity) .
                         runIdentity

-------------------------------------------------------------------------
-- | Extracts the first result from a 'Logic' computation, failing if
-- there are no results.
--
-- >>> observe (pure 5 <|> pure 3 <|> empty)
-- 5
--
-- >>> observe empty
-- *** Exception: No answer.
--
-- Since 'Logic' is isomorphic to a list, 'observe' is analogous to 'head'.
--
-- @since 0.2
observe :: Logic a -> a
observe lt = runIdentity $ unLogicT lt (const . pure) (error "No answer.")

-------------------------------------------------------------------------
-- | Extracts all results from a 'Logic' computation.
--
-- >>> observeAll (pure 5 <|> empty <|> empty <|> pure 3 <|> empty)
-- [5,3]
--
-- 'observeAll' reveals a half of the isomorphism between 'Logic'
-- and lists. See description of 'runLogic' for the other half.
--
-- @since 0.2
observeAll :: Logic a -> [a]
observeAll = runIdentity . observeAllT

-------------------------------------------------------------------------
-- | Extracts up to a given number of results from a 'Logic' computation.
--
-- >>> let nats = pure 0 <|> fmap (+ 1) nats
-- >>> observeMany 5 nats
-- [0,1,2,3,4]
--
-- Since 'Logic' is isomorphic to a list, 'observeMany' is analogous to 'take'.
--
-- @since 0.2
observeMany :: Int -> Logic a -> [a]
observeMany i = L.take i . observeAll
-- Implementing 'observeMany' using 'observeManyT' is quite costly,
-- because it calls 'msplit' multiple times.

-------------------------------------------------------------------------
-- | Runs a 'Logic' computation with the specified initial success and
-- failure continuations.
--
-- >>> runLogic empty (+) 0
-- 0
--
-- >>> runLogic (pure 5 <|> pure 3 <|> empty) (+) 0
-- 8
--
-- When invoked with @(:)@ and @[]@ as arguments, reveals
-- a half of the isomorphism between 'Logic' and lists.
-- See description of 'observeAll' for the other half.
--
-- @since 0.2
runLogic :: Logic a -> (a -> r -> r) -> r -> r
runLogic l s f = runIdentity $ unLogicT l si fi
 where
 si = fmap . s
 fi = Identity f

instance Functor (LogicT f) where
    fmap f lt = LogicT $ \sk fk -> unLogicT lt (sk . f) fk

instance Applicative (LogicT f) where
    pure a = LogicT $ \sk fk -> sk a fk
    f <*> a = LogicT $ \sk fk -> unLogicT f (\g fk' -> unLogicT a (sk . g) fk') fk

instance Alternative (LogicT f) where
    empty = LogicT $ \_ fk -> fk
    f1 <|> f2 = LogicT $ \sk fk -> unLogicT f1 sk (unLogicT f2 sk fk)

instance Monad (LogicT m) where
    return = pure
    m >>= f = LogicT $ \sk fk -> unLogicT m (\a fk' -> unLogicT (f a) sk fk') fk
#if !MIN_VERSION_base(4,13,0)
    fail = Fail.fail
#endif

-- | @since 0.6.0.3
instance Fail.MonadFail (LogicT m) where
    fail _ = LogicT $ \_ fk -> fk

instance MonadPlus (LogicT m) where
  mzero = empty
  mplus = (<|>)

#if MIN_VERSION_base(4,9,0)
-- | @since 0.7.0.3
instance Semigroup (LogicT m a) where
  (<>) = mplus
  sconcat = F.foldr1 mplus
#endif

-- | @since 0.7.0.3
instance Monoid (LogicT m a) where
  mempty = empty
#if MIN_VERSION_base(4,9,0)
  mappend = (<>)
#else
  mappend = (<|>)
#endif
  mconcat = F.asum

instance MonadTrans LogicT where
    lift m = LogicT $ \sk fk -> m >>= \a -> sk a fk

instance (MonadIO m) => MonadIO (LogicT m) where
    liftIO = lift . liftIO

instance (Monad m) => MonadLogic (LogicT m) where
    -- 'msplit' is quite costly even if the base 'Monad' is 'Identity'.
    -- Try to avoid it.
    msplit m = lift $ unLogicT m ssk (return Nothing)
     where
     ssk a fk = return $ Just (a, lift fk >>= reflect)
    once m = LogicT $ \sk fk -> unLogicT m (\a _ -> sk a fk) fk
    lnot m = LogicT $ \sk fk -> unLogicT m (\_ _ -> fk) (sk () fk)

#if MIN_VERSION_base(4,8,0)

-- | @since 0.5.0
instance {-# OVERLAPPABLE #-} (Applicative m, F.Foldable m) => F.Foldable (LogicT m) where
    foldMap f m = F.fold $ unLogicT m (fmap . mappend . f) (pure mempty)

-- | @since 0.5.0
instance {-# OVERLAPPING #-} F.Foldable (LogicT Identity) where
    foldr f z m = runLogic m f z

#else

-- | @since 0.5.0
instance (Applicative m, F.Foldable m) => F.Foldable (LogicT m) where
    foldMap f m = F.fold $ unLogicT m (fmap . mappend . f) (pure mempty)

#endif

-- A much simpler logic monad representation used to define the Traversable and
-- MonadZip instances. This is essentially the same as ListT from the list-t
-- package, but it uses a slightly more efficient representation: MLView m a is
-- more compact than Maybe (a, ML m a), and the additional laziness in the
-- latter appears to be incidental/historical.
newtype ML m a = ML (m (MLView m a))
  deriving (Functor, F.Foldable, T.Traversable)

data MLView m a = EmptyML | ConsML a (ML m a)
  deriving (Functor, F.Foldable)

instance T.Traversable m => T.Traversable (MLView m) where
  traverse _ EmptyML = pure EmptyML
  traverse f (ConsML x (ML m))
    = liftA2 (\y ym -> ConsML y (ML ym)) (f x) (T.traverse (T.traverse f) m)
  {- The derived instance would write the second case as
   -
   -   traverse f (ConsML x xs) = liftA2 ConsML (f x) (traverse @(ML m) f xs)
   -
   - Inlining the inner traverse gives
   -
   -   traverse f (ConsML x (ML m)) = liftA2 ConsML (f x) (ML <$> traverse (traverse f) m)
   -
   - revealing fmap under liftA2. We fuse those into a single application of liftA2,
   - in case fmap isn't free.
  -}

toML :: Applicative m => LogicT m a -> ML m a
toML (LogicT q) = ML $ q (\a m -> pure $ ConsML a (ML m)) (pure EmptyML)

fromML :: Monad m => ML m a -> LogicT m a
fromML (ML m) = lift m >>= \r -> case r of
  EmptyML -> empty
  ConsML a xs -> pure a <|> fromML xs

#if MIN_VERSION_base(4,8,0)
-- | @since 0.5.0
instance {-# OVERLAPPING #-} T.Traversable (LogicT Identity) where
  traverse g l = runLogic l (\a ft -> cons <$> g a <*> ft) (pure empty)
    where
      cons a l' = pure a <|> l'

-- | @since 0.8.0.0
instance {-# OVERLAPPABLE #-} (Monad m, T.Traversable m) => T.Traversable (LogicT m) where
  traverse f = fmap fromML . T.traverse f . toML
#else
-- | @since 0.8.0.0
instance (Monad m, Applicative m, T.Traversable m) => T.Traversable (LogicT m) where
  traverse f = fmap fromML . T.traverse f . toML
#endif

#if MIN_VERSION_base(4,8,0)
zipWithML :: MonadZip m => (a -> b -> c) -> ML m a -> ML m b -> ML m c
zipWithML f = go
    where
      go (ML m1) (ML m2) =
        ML $ mzipWith zv m1 m2
      zv (a `ConsML` as) (b `ConsML` bs) = f a b `ConsML` go as bs
      zv _ _ = EmptyML

unzipML :: MonadZip m => ML m (a, b) -> (ML m a, ML m b)
unzipML (ML m)
    | (l, r) <- munzip (fmap go m)
    = (ML l, ML r)
    where
      go EmptyML = (EmptyML, EmptyML)
      go ((a, b) `ConsML` listab)
        = (a `ConsML` la, b `ConsML` lb)
        where
          -- If the underlying munzip is careful not to leak memory, then we
          -- don't want to defeat it. We need to be sure that la and lb are
          -- realized as selector thunks. Hopefully the CPSish conversion
          -- doesn't muck anything up at another level.
          {-# NOINLINE remains #-}
          {-# NOINLINE la #-}
          {-# NOINLINE lb #-}
          remains = unzipML listab
          (la, lb) = remains

-- | @since 0.8.0.0
instance MonadZip m => MonadZip (LogicT m) where
  mzipWith f xs ys = fromML $ zipWithML f (toML xs) (toML ys)
  munzip xys = case unzipML (toML xys) of
    (xs, ys) -> (fromML xs, fromML ys)
#endif

instance MonadReader r m => MonadReader r (LogicT m) where
    ask = lift ask
    local f (LogicT m) = LogicT $ \sk fk -> do
        env <- ask
        local f $ m ((local (const env) .) . sk) (local (const env) fk)

instance MonadState s m => MonadState s (LogicT m) where
    get = lift get
    put = lift . put

-- | @since 0.4
instance MonadError e m => MonadError e (LogicT m) where
  throwError = lift . throwError
  catchError m h = LogicT $ \sk fk -> let
      handle r = r `catchError` \e -> unLogicT (h e) sk fk
    in handle $ unLogicT m (\a -> sk a . handle) fk