1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
|
-------------------------------------------------------------------------
-- |
-- Module : Control.Monad.Logic
-- Copyright : (c) 2007-2014 Dan Doel,
-- (c) 2011-2013 Edward Kmett,
-- (c) 2014 Roman Cheplyaka,
-- (c) 2020-2021 Andrew Lelechenko,
-- (c) 2020-2021 Kevin Quick
-- License : BSD3
-- Maintainer : Andrew Lelechenko <andrew.lelechenko@gmail.com>
--
-- Adapted from the paper
-- <http://okmij.org/ftp/papers/LogicT.pdf Backtracking, Interleaving, and Terminating Monad Transformers>
-- by Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, Amr Sabry.
-- Note that the paper uses 'MonadPlus' vocabulary
-- ('mzero' and 'mplus'),
-- while examples below prefer 'empty' and '<|>'
-- from 'Alternative'.
-------------------------------------------------------------------------
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE UndecidableInstances #-}
#if __GLASGOW_HASKELL__ >= 704
{-# LANGUAGE Safe #-}
#endif
module Control.Monad.Logic (
module Control.Monad.Logic.Class,
-- * The Logic monad
Logic,
logic,
runLogic,
observe,
observeMany,
observeAll,
-- * The LogicT monad transformer
LogicT(..),
runLogicT,
observeT,
observeManyT,
observeAllT,
fromLogicT,
fromLogicTWith,
hoistLogicT,
embedLogicT
) where
import Prelude (error, (-))
import Control.Applicative (Alternative(..), Applicative, liftA2, pure, (<*>))
import Control.Monad (join, MonadPlus(..), liftM, Monad(..), fail)
import qualified Control.Monad.Fail as Fail
import Control.Monad.Identity (Identity(..))
import Control.Monad.IO.Class (MonadIO(..))
import Control.Monad.Trans (MonadTrans(..))
#if MIN_VERSION_base(4,8,0)
import Control.Monad.Zip (MonadZip (..))
#endif
import Control.Monad.Reader.Class (MonadReader(..))
import Control.Monad.State.Class (MonadState(..))
import Control.Monad.Error.Class (MonadError(..))
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup (Semigroup (..))
#endif
import Data.Bool (otherwise)
import Data.Eq ((==))
import qualified Data.Foldable as F
import Data.Function (($), (.), const)
import Data.Functor (Functor(..), (<$>))
import Data.Int
import qualified Data.List as L
import Data.Maybe (Maybe(..))
import Data.Monoid (Monoid (..))
import Data.Ord ((<=))
import qualified Data.Traversable as T
import Control.Monad.Logic.Class
-------------------------------------------------------------------------
-- | A monad transformer for performing backtracking computations
-- layered over another monad @m@.
--
-- When @m@ is 'Identity', 'LogicT' @m@ becomes isomorphic to a list
-- (see 'Logic'). Thus 'LogicT' @m@ for non-trivial @m@ can be imagined
-- as a list, pattern matching on which causes monadic effects.
--
-- @since 0.2
newtype LogicT m a =
LogicT { unLogicT :: forall r. (a -> m r -> m r) -> m r -> m r }
-------------------------------------------------------------------------
-- | Extracts the first result from a 'LogicT' computation,
-- failing if there are no results at all.
--
-- @since 0.2
#if !MIN_VERSION_base(4,13,0)
observeT :: Monad m => LogicT m a -> m a
#else
observeT :: Fail.MonadFail m => LogicT m a -> m a
#endif
observeT lt = unLogicT lt (const . return) (fail "No answer.")
-------------------------------------------------------------------------
-- | Extracts all results from a 'LogicT' computation, unless blocked by the
-- underlying monad.
--
-- For example, given
--
-- >>> let nats = pure 0 <|> fmap (+ 1) nats
--
-- some monads (like 'Identity', 'Control.Monad.Reader.Reader',
-- 'Control.Monad.Writer.Writer', and 'Control.Monad.State.State')
-- will be productive:
--
-- >>> take 5 $ runIdentity (observeAllT nats)
-- [0,1,2,3,4]
--
-- but others (like 'Control.Monad.Except.ExceptT',
-- and 'Control.Monad.Cont.ContT') will not:
--
-- >>> take 20 <$> runExcept (observeAllT nats)
--
-- In general, if the underlying monad manages control flow then
-- 'observeAllT' may be unproductive under infinite branching,
-- and 'observeManyT' should be used instead.
--
-- @since 0.2
observeAllT :: Applicative m => LogicT m a -> m [a]
observeAllT m = unLogicT m (fmap . (:)) (pure [])
-------------------------------------------------------------------------
-- | Extracts up to a given number of results from a 'LogicT' computation.
--
-- @since 0.2
observeManyT :: Monad m => Int -> LogicT m a -> m [a]
observeManyT n m
| n <= 0 = return []
| n == 1 = unLogicT m (\a _ -> return [a]) (return [])
| otherwise = unLogicT (msplit m) sk (return [])
where
sk Nothing _ = return []
sk (Just (a, m')) _ = (a:) `liftM` observeManyT (n-1) m'
-------------------------------------------------------------------------
-- | Runs a 'LogicT' computation with the specified initial success and
-- failure continuations.
--
-- The second argument ("success continuation") takes one result of
-- the 'LogicT' computation and the monad to run for any subsequent
-- matches.
--
-- The third argument ("failure continuation") is called when the
-- 'LogicT' cannot produce any more results.
--
-- For example:
--
-- >>> yieldWords = foldr ((<|>) . pure) empty
-- >>> showEach wrd nxt = putStrLn wrd >> nxt
-- >>> runLogicT (yieldWords ["foo", "bar"]) showEach (putStrLn "none!")
-- foo
-- bar
-- none!
-- >>> runLogicT (yieldWords []) showEach (putStrLn "none!")
-- none!
-- >>> showFirst wrd _ = putStrLn wrd
-- >>> runLogicT (yieldWords ["foo", "bar"]) showFirst (putStrLn "none!")
-- foo
--
-- @since 0.2
runLogicT :: LogicT m a -> (a -> m r -> m r) -> m r -> m r
runLogicT (LogicT r) = r
-- | Convert from 'LogicT' to an arbitrary logic-like monad transformer,
-- such as <https://hackage.haskell.org/package/list-t list-t>
-- or <https://hackage.haskell.org/package/logict-sequence logict-sequence>
--
-- For example, to show a representation of the structure of a `LogicT`
-- computation, @l@, over a data-like `Monad` (such as @[]@,
-- @Data.Sequence.Seq@, etc.), you could write
--
-- @
-- import ListT (ListT)
--
-- 'show' $ fromLogicT @ListT l
-- @
--
-- @since 0.8.0.0
#if MIN_VERSION_base(4,8,0)
fromLogicT :: (Alternative (t m), MonadTrans t, Monad m, Monad (t m))
=> LogicT m a -> t m a
#else
fromLogicT :: (Alternative (t m), MonadTrans t, Applicative m, Monad m, Monad (t m))
=> LogicT m a -> t m a
#endif
fromLogicT = fromLogicTWith lift
-- | Convert from @'LogicT' m@ to an arbitrary logic-like monad,
-- such as @[]@.
--
-- Examples:
--
-- @
-- 'fromLogicT' = fromLogicTWith d
-- 'hoistLogicT' f = fromLogicTWith ('lift' . f)
-- 'embedLogicT' f = 'fromLogicTWith' f
-- @
--
-- The first argument should be a
-- <https://hackage.haskell.org/package/mmorph/docs/Control-Monad-Morph.html monad morphism>.
-- to produce sensible results.
--
-- @since 0.8.0.0
fromLogicTWith :: (Applicative m, Monad n, Alternative n)
=> (forall x. m x -> n x) -> LogicT m a -> n a
fromLogicTWith p (LogicT f) = join . p $
f (\a v -> pure (pure a <|> join (p v))) (pure empty)
-- | Convert a 'LogicT' computation from one underlying monad to another.
-- For example,
--
-- @
-- hoistLogicT lift :: LogicT m a -> LogicT (StateT m) a
-- @
--
-- The first argument should be a
-- <https://hackage.haskell.org/package/mmorph/docs/Control-Monad-Morph.html monad morphism>.
-- to produce sensible results.
--
-- @since 0.8.0.0
hoistLogicT :: (Applicative m, Monad n) => (forall x. m x -> n x) -> LogicT m a -> LogicT n a
hoistLogicT f = fromLogicTWith (lift . f)
-- | Convert a 'LogicT' computation from one underlying monad to another.
--
-- The first argument should be a
-- <https://hackage.haskell.org/package/mmorph/docs/Control-Monad-Morph.html monad morphism>.
-- to produce sensible results.
--
-- @since 0.8.0.0
embedLogicT :: Applicative m => (forall a. m a -> LogicT n a) -> LogicT m b -> LogicT n b
embedLogicT f = fromLogicTWith f
-------------------------------------------------------------------------
-- | The basic 'Logic' monad, for performing backtracking computations
-- returning values (e.g. 'Logic' @a@ will return values of type @a@).
--
-- __Technical perspective.__
-- 'Logic' is a
-- <http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html Boehm-Berarducci encoding>
-- of lists. Speaking plainly, its type is identical (up to 'Identity' wrappers)
-- to 'foldr' applied to a given list. And this list itself can be reconstructed
-- by supplying @(:)@ and @[]@.
--
-- > import Data.Functor.Identity
-- >
-- > fromList :: [a] -> Logic a
-- > fromList xs = LogicT $ \cons nil -> foldr cons nil xs
-- >
-- > toList :: Logic a -> [a]
-- > toList (LogicT fld) = runIdentity $ fld (\x (Identity xs) -> Identity (x : xs)) (Identity [])
--
-- Here is a systematic derivation of the isomorphism. We start with observing
-- that @[a]@ is isomorphic to a fix point of a non-recursive
-- base algebra @Fix@ (@ListF@ @a@):
--
-- > newtype Fix f = Fix (f (Fix f))
-- > data ListF a r = ConsF a r | NilF deriving (Functor)
-- >
-- > cata :: Functor f => (f r -> r) -> Fix f -> r
-- > cata f = go where go (Fix x) = f (fmap go x)
-- >
-- > from :: [a] -> Fix (ListF a)
-- > from = foldr (\a acc -> Fix (ConsF a acc)) (Fix NilF)
-- >
-- > to :: Fix (ListF a) -> [a]
-- > to = cata (\case ConsF a r -> a : r; NilF -> [])
--
-- Further, @Fix@ (@ListF@ @a@) is isomorphic to Boehm-Berarducci encoding @ListC@ @a@:
--
-- > newtype ListC a = ListC (forall r. (ListF a r -> r) -> r)
-- >
-- > from :: Fix (ListF a) -> ListC a
-- > from xs = ListC (\f -> cata f xs)
-- >
-- > to :: ListC a -> Fix (ListF a)
-- > to (ListC f) = f Fix
--
-- Finally, @ListF@ @a@ @r@ → @r@ is isomorphic to a pair (@a@ → @r@ → @r@, @r@),
-- so @ListC@ is isomorphic to the 'Logic' type modulo 'Identity' wrappers:
--
-- > newtype Logic a = Logic (forall r. (a -> r -> r) -> r -> r)
--
-- And wrapping every occurence of @r@ into @m@ gives us 'LogicT':
--
-- > newtype LogicT m a = Logic (forall r. (a -> m r -> m r) -> m r -> m r)
--
-- @since 0.5.0
type Logic = LogicT Identity
-------------------------------------------------------------------------
-- | A smart constructor for 'Logic' computations.
--
-- @since 0.5.0
logic :: (forall r. (a -> r -> r) -> r -> r) -> Logic a
logic f = LogicT $ \k -> Identity .
f (\a -> runIdentity . k a . Identity) .
runIdentity
-------------------------------------------------------------------------
-- | Extracts the first result from a 'Logic' computation, failing if
-- there are no results.
--
-- >>> observe (pure 5 <|> pure 3 <|> empty)
-- 5
--
-- >>> observe empty
-- *** Exception: No answer.
--
-- Since 'Logic' is isomorphic to a list, 'observe' is analogous to 'head'.
--
-- @since 0.2
observe :: Logic a -> a
observe lt = runIdentity $ unLogicT lt (const . pure) (error "No answer.")
-------------------------------------------------------------------------
-- | Extracts all results from a 'Logic' computation.
--
-- >>> observeAll (pure 5 <|> empty <|> empty <|> pure 3 <|> empty)
-- [5,3]
--
-- 'observeAll' reveals a half of the isomorphism between 'Logic'
-- and lists. See description of 'runLogic' for the other half.
--
-- @since 0.2
observeAll :: Logic a -> [a]
observeAll = runIdentity . observeAllT
-------------------------------------------------------------------------
-- | Extracts up to a given number of results from a 'Logic' computation.
--
-- >>> let nats = pure 0 <|> fmap (+ 1) nats
-- >>> observeMany 5 nats
-- [0,1,2,3,4]
--
-- Since 'Logic' is isomorphic to a list, 'observeMany' is analogous to 'take'.
--
-- @since 0.2
observeMany :: Int -> Logic a -> [a]
observeMany i = L.take i . observeAll
-- Implementing 'observeMany' using 'observeManyT' is quite costly,
-- because it calls 'msplit' multiple times.
-------------------------------------------------------------------------
-- | Runs a 'Logic' computation with the specified initial success and
-- failure continuations.
--
-- >>> runLogic empty (+) 0
-- 0
--
-- >>> runLogic (pure 5 <|> pure 3 <|> empty) (+) 0
-- 8
--
-- When invoked with @(:)@ and @[]@ as arguments, reveals
-- a half of the isomorphism between 'Logic' and lists.
-- See description of 'observeAll' for the other half.
--
-- @since 0.2
runLogic :: Logic a -> (a -> r -> r) -> r -> r
runLogic l s f = runIdentity $ unLogicT l si fi
where
si = fmap . s
fi = Identity f
instance Functor (LogicT f) where
fmap f lt = LogicT $ \sk fk -> unLogicT lt (sk . f) fk
instance Applicative (LogicT f) where
pure a = LogicT $ \sk fk -> sk a fk
f <*> a = LogicT $ \sk fk -> unLogicT f (\g fk' -> unLogicT a (sk . g) fk') fk
instance Alternative (LogicT f) where
empty = LogicT $ \_ fk -> fk
f1 <|> f2 = LogicT $ \sk fk -> unLogicT f1 sk (unLogicT f2 sk fk)
instance Monad (LogicT m) where
return = pure
m >>= f = LogicT $ \sk fk -> unLogicT m (\a fk' -> unLogicT (f a) sk fk') fk
#if !MIN_VERSION_base(4,13,0)
fail = Fail.fail
#endif
-- | @since 0.6.0.3
instance Fail.MonadFail (LogicT m) where
fail _ = LogicT $ \_ fk -> fk
instance MonadPlus (LogicT m) where
mzero = empty
mplus = (<|>)
#if MIN_VERSION_base(4,9,0)
-- | @since 0.7.0.3
instance Semigroup (LogicT m a) where
(<>) = mplus
sconcat = F.foldr1 mplus
#endif
-- | @since 0.7.0.3
instance Monoid (LogicT m a) where
mempty = empty
#if MIN_VERSION_base(4,9,0)
mappend = (<>)
#else
mappend = (<|>)
#endif
mconcat = F.asum
instance MonadTrans LogicT where
lift m = LogicT $ \sk fk -> m >>= \a -> sk a fk
instance (MonadIO m) => MonadIO (LogicT m) where
liftIO = lift . liftIO
instance (Monad m) => MonadLogic (LogicT m) where
-- 'msplit' is quite costly even if the base 'Monad' is 'Identity'.
-- Try to avoid it.
msplit m = lift $ unLogicT m ssk (return Nothing)
where
ssk a fk = return $ Just (a, lift fk >>= reflect)
once m = LogicT $ \sk fk -> unLogicT m (\a _ -> sk a fk) fk
lnot m = LogicT $ \sk fk -> unLogicT m (\_ _ -> fk) (sk () fk)
#if MIN_VERSION_base(4,8,0)
-- | @since 0.5.0
instance {-# OVERLAPPABLE #-} (Applicative m, F.Foldable m) => F.Foldable (LogicT m) where
foldMap f m = F.fold $ unLogicT m (fmap . mappend . f) (pure mempty)
-- | @since 0.5.0
instance {-# OVERLAPPING #-} F.Foldable (LogicT Identity) where
foldr f z m = runLogic m f z
#else
-- | @since 0.5.0
instance (Applicative m, F.Foldable m) => F.Foldable (LogicT m) where
foldMap f m = F.fold $ unLogicT m (fmap . mappend . f) (pure mempty)
#endif
-- A much simpler logic monad representation used to define the Traversable and
-- MonadZip instances. This is essentially the same as ListT from the list-t
-- package, but it uses a slightly more efficient representation: MLView m a is
-- more compact than Maybe (a, ML m a), and the additional laziness in the
-- latter appears to be incidental/historical.
newtype ML m a = ML (m (MLView m a))
deriving (Functor, F.Foldable, T.Traversable)
data MLView m a = EmptyML | ConsML a (ML m a)
deriving (Functor, F.Foldable)
instance T.Traversable m => T.Traversable (MLView m) where
traverse _ EmptyML = pure EmptyML
traverse f (ConsML x (ML m))
= liftA2 (\y ym -> ConsML y (ML ym)) (f x) (T.traverse (T.traverse f) m)
{- The derived instance would write the second case as
-
- traverse f (ConsML x xs) = liftA2 ConsML (f x) (traverse @(ML m) f xs)
-
- Inlining the inner traverse gives
-
- traverse f (ConsML x (ML m)) = liftA2 ConsML (f x) (ML <$> traverse (traverse f) m)
-
- revealing fmap under liftA2. We fuse those into a single application of liftA2,
- in case fmap isn't free.
-}
toML :: Applicative m => LogicT m a -> ML m a
toML (LogicT q) = ML $ q (\a m -> pure $ ConsML a (ML m)) (pure EmptyML)
fromML :: Monad m => ML m a -> LogicT m a
fromML (ML m) = lift m >>= \r -> case r of
EmptyML -> empty
ConsML a xs -> pure a <|> fromML xs
#if MIN_VERSION_base(4,8,0)
-- | @since 0.5.0
instance {-# OVERLAPPING #-} T.Traversable (LogicT Identity) where
traverse g l = runLogic l (\a ft -> cons <$> g a <*> ft) (pure empty)
where
cons a l' = pure a <|> l'
-- | @since 0.8.0.0
instance {-# OVERLAPPABLE #-} (Monad m, T.Traversable m) => T.Traversable (LogicT m) where
traverse f = fmap fromML . T.traverse f . toML
#else
-- | @since 0.8.0.0
instance (Monad m, Applicative m, T.Traversable m) => T.Traversable (LogicT m) where
traverse f = fmap fromML . T.traverse f . toML
#endif
#if MIN_VERSION_base(4,8,0)
zipWithML :: MonadZip m => (a -> b -> c) -> ML m a -> ML m b -> ML m c
zipWithML f = go
where
go (ML m1) (ML m2) =
ML $ mzipWith zv m1 m2
zv (a `ConsML` as) (b `ConsML` bs) = f a b `ConsML` go as bs
zv _ _ = EmptyML
unzipML :: MonadZip m => ML m (a, b) -> (ML m a, ML m b)
unzipML (ML m)
| (l, r) <- munzip (fmap go m)
= (ML l, ML r)
where
go EmptyML = (EmptyML, EmptyML)
go ((a, b) `ConsML` listab)
= (a `ConsML` la, b `ConsML` lb)
where
-- If the underlying munzip is careful not to leak memory, then we
-- don't want to defeat it. We need to be sure that la and lb are
-- realized as selector thunks. Hopefully the CPSish conversion
-- doesn't muck anything up at another level.
{-# NOINLINE remains #-}
{-# NOINLINE la #-}
{-# NOINLINE lb #-}
remains = unzipML listab
(la, lb) = remains
-- | @since 0.8.0.0
instance MonadZip m => MonadZip (LogicT m) where
mzipWith f xs ys = fromML $ zipWithML f (toML xs) (toML ys)
munzip xys = case unzipML (toML xys) of
(xs, ys) -> (fromML xs, fromML ys)
#endif
instance MonadReader r m => MonadReader r (LogicT m) where
ask = lift ask
local f (LogicT m) = LogicT $ \sk fk -> do
env <- ask
local f $ m ((local (const env) .) . sk) (local (const env) fk)
instance MonadState s m => MonadState s (LogicT m) where
get = lift get
put = lift . put
-- | @since 0.4
instance MonadError e m => MonadError e (LogicT m) where
throwError = lift . throwError
catchError m h = LogicT $ \sk fk -> let
handle r = r `catchError` \e -> unLogicT (h e) sk fk
in handle $ unLogicT m (\a -> sk a . handle) fk
|