1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
module Main where
import Test.Tasty
import Test.Tasty.HUnit
import Control.Arrow ( left )
import Control.Concurrent ( threadDelay )
import Control.Concurrent.Async ( race )
import Control.Exception
import Control.Monad
import Control.Monad.Identity
import Control.Monad.Logic
import Control.Monad.Reader
import qualified Control.Monad.State.Lazy as SL
import qualified Control.Monad.State.Strict as SS
import Data.Maybe
#if MIN_VERSION_base(4,9,0) && !MIN_VERSION_base(4,11,0)
import Data.Semigroup (Semigroup (..))
#endif
-- required by base < 4.9 OR CPS Writer test
#if !MIN_VERSION_base(4,9,0) || MIN_VERSION_mtl(2,3,0)
import Data.Monoid
#endif
#if MIN_VERSION_mtl(2,3,0)
import qualified Control.Monad.Writer.CPS as CpsW (WriterT, execWriterT, tell)
import qualified Control.Monad.Trans.Writer.CPS as CpsW (runWriterT)
#endif
monadReader1 :: Assertion
monadReader1 = assertEqual "should be equal" [5 :: Int] $
runReader (observeAllT (local (+ 5) ask)) 0
monadReader2 :: Assertion
monadReader2 = assertEqual "should be equal" [(5, 0)] $
runReader (observeAllT foo) 0
where
foo :: MonadReader Int m => m (Int,Int)
foo = do
x <- local (5+) ask
y <- ask
return (x,y)
monadReader3 :: Assertion
monadReader3 = assertEqual "should be equal" [5,3] $
runReader (observeAllT (plus5 `mplus` mzero `mplus` plus3)) (0 :: Int)
where
plus5 = local (5+) ask
plus3 = local (3+) ask
nats, odds, oddsOrTwo,
oddsOrTwoUnfair, oddsOrTwoFair,
odds5down :: Monad m => LogicT m Integer
-- | A `WriterT` version of `evalStateT`.
#if MIN_VERSION_mtl(2,3,0)
evalWriterT :: (Monad m, Monoid w) => CpsW.WriterT w m a -> m a
evalWriterT = fmap fst . CpsW.runWriterT
#endif
#if MIN_VERSION_base(4,8,0)
nats = pure 0 `mplus` ((1 +) <$> nats)
#else
nats = return 0 `mplus` liftM (1 +) nats
#endif
odds = return 1 `mplus` liftM (2+) odds
oddsOrTwoUnfair = odds `mplus` return 2
oddsOrTwoFair = odds `interleave` return 2
oddsOrTwo = do x <- oddsOrTwoFair
if even x then once (return x) else mzero
odds5down = return 5 `mplus` mempty `mplus` mempty `mplus` return 3 `mplus` return 1
yieldWords :: [String] -> LogicT m String
yieldWords = go
where go [] = mzero
go (w:ws) = return w `mplus` go ws
main :: IO ()
main = defaultMain $
#if __GLASGOW_HASKELL__ >= 702
localOption (mkTimeout 3000000) $ -- 3 second deadman timeout
#endif
testGroup "All"
[ testGroup "Monad Reader + env"
[ testCase "Monad Reader 1" monadReader1
, testCase "Monad Reader 2" monadReader2
, testCase "Monad Reader 3" monadReader3
]
, testGroup "Various monads"
[
-- nats will generate an infinite number of results; demonstrate
-- various ways of observing them via Logic/LogicT
testCase "runIdentity all" $ [0..4] @=? (take 5 $ runIdentity $ observeAllT nats)
, testCase "runIdentity many" $ [0..4] @=? (runIdentity $ observeManyT 5 nats)
, testCase "observeAll" $ [0..4] @=? (take 5 $ observeAll nats)
, testCase "observeMany" $ [0..4] @=? (observeMany 5 nats)
-- Ensure LogicT can be run over other base monads other than
-- List. Some are productive (Reader) and some are non-productive
-- (ExceptT, ContT) in the observeAll case.
, testCase "runReader is productive" $
[0..4] @=? (take 5 $ runReader (observeAllT nats) "!")
, testCase "observeManyT can be used with Either" $
(Right [0..4] :: Either Char [Integer]) @=?
(observeManyT 5 nats)
]
--------------------------------------------------
, testGroup "Control.Monad.Logic tests"
[
testCase "runLogicT multi" $ ["Hello world !"] @=?
let conc w o = fmap ((w `mappend` " ") `mappend`) o in
(runLogicT (yieldWords ["Hello", "world"]) conc (return "!"))
, testCase "runLogicT none" $ ["!"] @=?
let conc w o = fmap ((w `mappend` " ") `mappend`) o in
(runLogicT (yieldWords []) conc (return "!"))
, testCase "runLogicT first" $ ["Hello"] @=?
(runLogicT (yieldWords ["Hello", "world"]) (\w -> const $ return w) (return "!"))
, testCase "runLogic multi" $ 20 @=? runLogic odds5down (+) 11
, testCase "runLogic none" $ 11 @=? runLogic mzero (+) (11 :: Integer)
, testCase "observe multi" $ 5 @=? observe odds5down
, testCase "observe none" $ (Left "No answer." @=?) =<< safely (observe mzero)
, testCase "observeAll multi" $ [5,3,1] @=? observeAll odds5down
, testCase "observeAll none" $ ([] :: [Integer]) @=? observeAll mzero
, testCase "observeMany multi" $ [5,3] @=? observeMany 2 odds5down
, testCase "observeMany none" $ ([] :: [Integer]) @=? observeMany 2 mzero
]
--------------------------------------------------
, testGroup "Control.Monad.Logic.Class tests"
[
testGroup "msplit laws"
[
testGroup "msplit mzero == return Nothing"
[
testCase "msplit mzero :: []" $
msplit mzero @=? return (Nothing :: Maybe (String, [String]))
, testCase "msplit mzero :: ReaderT" $
let z :: ReaderT Int [] String
z = mzero
in assertBool "ReaderT" $ null $ catMaybes $ runReaderT (msplit z) 0
#if MIN_VERSION_mtl(2,3,0)
, testCase "msplit mzero :: CPS WriterT" $
let z :: CpsW.WriterT (Sum Int) [] String
z = mzero
in assertBool "CPS WriterT" $ null $ catMaybes (evalWriterT (msplit z))
#endif
, testCase "msplit mzero :: LogicT" $
let z :: LogicT [] String
z = mzero
in assertBool "LogicT" $ null $ catMaybes $ concat $ observeAllT (msplit z)
, testCase "msplit mzero :: strict StateT" $
let z :: SS.StateT Int [] String
z = mzero
in assertBool "strict StateT" $ null $ catMaybes $ SS.evalStateT (msplit z) 0
, testCase "msplit mzero :: lazy StateT" $
let z :: SL.StateT Int [] String
z = mzero
in assertBool "lazy StateT" $ null $ catMaybes $ SL.evalStateT (msplit z) 0
]
, testGroup "msplit (return a `mplus` m) == return (Just a, m)" $
let sample = [1::Integer,2,3] in
[
testCase "msplit []" $ do
let op = sample
extract = fmap (fmap fst)
extract (msplit op) @?= [Just 1]
extract (msplit op >>= (\(Just (_,nxt)) -> msplit nxt)) @?= [Just 2]
, testCase "msplit ReaderT" $ do
let op = ask
extract = fmap fst . catMaybes . flip runReaderT sample
extract (msplit op) @?= [sample]
extract (msplit op >>= (\(Just (_,nxt)) -> msplit nxt)) @?= []
#if MIN_VERSION_mtl(2,3,0)
, testCase "msplit CPS WriterT" $ do
let op :: CpsW.WriterT (Sum Integer) [] ()
op = CpsW.tell 1 `mplus` op
extract = CpsW.execWriterT
extract (msplit op) @?= [1]
extract (msplit op >>= \(Just (_,nxt)) -> msplit nxt) @?= [2]
#endif
, testCase "msplit LogicT" $ do
let op :: LogicT [] Integer
op = foldr (mplus . return) mzero sample
extract = fmap fst . catMaybes . concat . observeAllT
extract (msplit op) @?= [1]
extract (msplit op >>= (\(Just (_,nxt)) -> msplit nxt)) @?= [2]
, testCase "msplit strict StateT" $ do
let op :: SS.StateT Integer [] Integer
op = (SS.modify (+1) >> SS.get `mplus` op)
extract = fmap fst . catMaybes . flip SS.evalStateT 0
extract (msplit op) @?= [1]
extract (msplit op >>= \(Just (_,nxt)) -> msplit nxt) @?= [2]
, testCase "msplit lazy StateT" $ do
let op :: SL.StateT Integer [] Integer
op = (SL.modify (+1) >> SL.get `mplus` op)
extract = fmap fst . catMaybes . flip SL.evalStateT 0
extract (msplit op) @?= [1]
extract (msplit op >>= \(Just (_,nxt)) -> msplit nxt) @?= [2]
]
]
, testGroup "fair disjunction"
[
-- base case
testCase "some odds" $ [1,3,5,7] @=? observeMany 4 odds
-- without fairness, the second producer is never considered
, testCase "unfair disjunction" $ [1,3,5,7] @=? observeMany 4 oddsOrTwoUnfair
-- with fairness, the results are interleaved
, testCase "fair disjunction :: LogicT" $ [1,2,3,5] @=? observeMany 4 oddsOrTwoFair
-- without fairness nothing would be produced, but with
-- fairness, a production is obtained
, testCase "fair production" $ [2] @=? observeT oddsOrTwo
-- however, asking for additional productions will not
-- terminate (there are none, since the first clause generates
-- an infinity of mzero "failures")
, testCase "NONTERMINATION even when fair" $
(Left () @=?) =<< (nonTerminating $ observeManyT 2 oddsOrTwo)
-- Validate fair disjunction works for other
-- Control.Monad.Logic.Class instances
, testCase "fair disjunction :: []" $ [1,2,3,5] @=?
(take 4 $ let oddsL = [ 1::Integer ] `mplus` [ o | o <- [3..], odd o ]
oddsOrTwoLFair = oddsL `interleave` [2]
in oddsOrTwoLFair)
, testCase "fair disjunction :: ReaderT" $ [1,2,3,5] @=?
(take 4 $ runReaderT (let oddsR = return 1 `mplus` liftM (2+) oddsR
in oddsR `interleave` return (2 :: Integer)) "go")
#if MIN_VERSION_mtl(2,3,0)
, testCase "fair disjunction :: CPS WriterT" $ [1,2,3,5] @=?
(take 4 $ evalWriterT (let oddsW :: CpsW.WriterT [Char] [] Integer
oddsW = return 1 `mplus` liftM (2+) oddsW
in oddsW `interleave` return (2 :: Integer)))
#endif
, testCase "fair disjunction :: strict StateT" $ [1,2,3,5] @=?
(take 4 $ SS.evalStateT (let oddsS = return 1 `mplus` liftM (2+) oddsS
in oddsS `interleave` return (2 :: Integer)) "go")
, testCase "fair disjunction :: lazy StateT" $ [1,2,3,5] @=?
(take 4 $ SL.evalStateT (let oddsS = return 1 `mplus` liftM (2+) oddsS
in oddsS `interleave` return (2 :: Integer)) "go")
]
, testGroup "fair conjunction" $
[
-- Using the fair conjunction operator (>>-) the test produces values
testCase "fair conjunction :: LogicT" $ [2,4,6,8] @=?
observeMany 4 (let oddsPlus n = odds >>= \a -> return (a + n) in
do x <- (return 0 `mplus` return 1) >>- oddsPlus
if even x then return x else mzero
)
-- The first >>- results in a term that produces only a stream
-- of evens, so the >>- can produce from that stream. The
-- operation is effectively:
--
-- (interleave (return 0) (return 1)) >>- oddsPlus >>- if ...
--
-- And so the values produced for oddsPlus to consume are
-- alternated between 0 and 1, allowing oddsPlus to produce a
-- value for every 1 received.
, testCase "fair conjunction OK" $ [2,4,6,8] @=?
observeMany 4 (let oddsPlus n = odds >>= \a -> return (a + n) in
(return 0 `mplus` return 1) >>-
oddsPlus >>-
(\x -> if even x then return x else mzero)
)
-- This demonstrates that there is no choice to be made for
-- oddsPlus productions in the above and >>- is effectively >>=.
, testCase "fair conjunction also OK" $ [2,4,6,8] @=?
observeMany 4 (let oddsPlus n = odds >>= \a -> return (a + n) in
((return 0 `mplus` return 1) >>-
\a -> oddsPlus a) >>=
(\x -> if even x then return x else mzero)
)
-- Here the application is effectively rewritten as
--
-- interleave (oddsPlus 0 >>- \x -> if ...)
-- (oddsPlus 1 >>- \x -> if ...)
--
-- which fails to produce any values because interleave still
-- requires production of values from both branches to switch
-- between those values, but the first (oddsPlus 0 ...) never
-- produces any values.
, testCase "fair conjunction NON-PRODUCTIVE" $
(Left () @=?) =<<
(nonTerminating $
observeManyT 4 (let oddsPlus n = odds >>= \a -> return (a + n) in
(return 0 `mplus` return 1) >>-
\a -> oddsPlus a >>-
(\x -> if even x then return x else mzero)
))
-- This shows that the second >>- is effectively >>= since
-- there's no choice point for it, and values still cannot be
-- produced.
, testCase "fair conjunction also NON-PRODUCTIVE" $
(Left () @=?) =<<
(nonTerminating $
observeManyT 4 (let oddsPlus n = odds >>= \a -> return (a + n) in
(return 0 `mplus` return 1) >>-
\a -> oddsPlus a >>=
(\x -> if even x then return x else mzero)
))
-- unfair conjunction does not terminate or produce any
-- values: this will fail (expectedly) due to a timeout
, testCase "unfair conjunction is NON-PRODUCTIVE" $
(Left () @=?) =<<
(nonTerminating $
observeManyT 4 (let oddsPlus n = odds >>= \a -> return (a + n) in
do x <- (return 0 `mplus` return 1) >>= oddsPlus
if even x then return x else mzero
))
, testCase "fair conjunction :: []" $ [2,4,6,8] @=?
(take 4 $ let oddsL = [ 1 :: Integer ] `mplus` [ o | o <- [3..], odd o ]
oddsPlus n = [ a + n | a <- oddsL ]
in do x <- [0] `mplus` [1] >>- oddsPlus
if even x then return x else mzero
)
, testCase "fair conjunction :: ReaderT" $ [2,4,6,8] @=?
(take 4 $ runReaderT (let oddsR = return (1 :: Integer) `mplus` liftM (2+) oddsR
oddsPlus n = oddsR >>= \a -> return (a + n)
in do x <- (return 0 `mplus` return 1) >>- oddsPlus
if even x then return x else mzero
) "env")
#if MIN_VERSION_mtl(2,3,0)
, testCase "fair conjunction :: CPS WriterT" $ [2,4,6,8] @=?
(take 4 $ evalWriterT $
(let oddsW :: CpsW.WriterT [Char] [] Integer
oddsW = return (1 :: Integer) `mplus` liftM (2+) oddsW
oddsPlus n = oddsW >>= \a -> return (a + n)
in do x <- (return 0 `mplus` return 1) >>- oddsPlus
if even x then return x else mzero
))
#endif
, testCase "fair conjunction :: strict StateT" $ [2,4,6,8] @=?
(take 4 $ SS.evalStateT (let oddsS = return (1 :: Integer) `mplus` liftM (2+) oddsS
oddsPlus n = oddsS >>= \a -> return (a + n)
in do x <- (return 0 `mplus` return 1) >>- oddsPlus
if even x then return x else mzero
) "state")
, testCase "fair conjunction :: lazy StateT" $ [2,4,6,8] @=?
(take 4 $ SL.evalStateT (let oddsS = return (1 :: Integer) `mplus` liftM (2+) oddsS
oddsPlus n = oddsS >>= \a -> return (a + n)
in do x <- (return 0 `mplus` return 1) >>- oddsPlus
if even x then return x else mzero
) "env")
]
, testGroup "ifte logical conditional (soft-cut)"
[
-- Initial example returns all odds which are divisible by
-- another number. Nothing special is needed to implement this.
let iota n = msum (map return [1..n])
oc = do n <- odds
guard (n > 1)
d <- iota (n - 1)
guard (d > 1 && n `mod` d == 0)
return n
in testCase "divisible odds" $ [9,15,15,21,21,25,27,27,33,33] @=?
observeMany 10 oc
-- To get the inverse: all odds which are *not* divisible by
-- another number, the guard test cannot simply be reversed:
-- there are many produced values that are not divisors, but
-- some that are:
, let iota n = msum (map return [1..n])
oc = do n <- odds
guard (n > 1)
d <- iota (n - 1)
guard (d > 1 && n `mod` d /= 0)
return n
in testCase "indivisible odds, wrong" $
[3,5,5,5,7,7,7,7,7,9] @=?
observeMany 10 oc
-- For the inverse logic to work correctly, it should return
-- values only when there are *no* divisors at all. This can be
-- done using the "soft cut" or "negation as finite failure" to
-- needed to fail the current solution entirely. This is
-- provided by logict as the 'ifte' operator.
, let iota n = msum (map return [1..n])
oc = do n <- odds
guard (n > 1)
ifte (do d <- iota (n - 1)
guard (d > 1 && n `mod` d == 0))
(const mzero)
(return n)
in testCase "indivisible odds :: LogicT" $ [3,5,7,11,13,17,19,23,29,31] @=?
observeMany 10 oc
, let iota n = [1..n]
oddsL = [ 1 :: Integer ] `mplus` [ o | o <- [3..], odd o ]
oc = [ n
| n <- oddsL
, (n > 1)
] >>= \n -> ifte (do d <- iota (n - 1)
guard (d > 1 && n `mod` d == 0))
(const mzero)
(return n)
in testCase "indivisible odds :: []" $ [3,5,7,11,13,17,19,23,29,31] @=?
take 10 oc
, let iota n = msum (map return [1..n])
oddsR = return (1 :: Integer) `mplus` liftM (2+) oddsR
oc = do n <- oddsR
guard (n > 1)
ifte (do d <- iota (n - 1)
guard (d > 1 && n `mod` d == 0))
(const mzero)
(return n)
in testCase "indivisible odds :: ReaderT" $ [3,5,7,11,13,17,19,23,29,31] @=?
(take 10 $ runReaderT oc "env")
#if MIN_VERSION_mtl(2,3,0)
, let iota n = msum (map return [1..n])
oddsW = return (1 :: Integer) `mplus` liftM (2+) oddsW
oc :: CpsW.WriterT [Char] [] Integer
oc = do n <- oddsW
guard (n > 1)
ifte (do d <- iota (n - 1)
guard (d > 1 && n `mod` d == 0))
(const mzero)
(return n)
in testCase "indivisible odds :: CPS WriterT" $ [3,5,7,11,13,17,19,23,29,31] @=?
(take 10 $ (fmap fst . CpsW.runWriterT) oc)
#endif
, let iota n = msum (map return [1..n])
oddsS = return (1 :: Integer) `mplus` liftM (2+) oddsS
oc = do n <- oddsS
guard (n > 1)
ifte (do d <- iota (n - 1)
guard (d > 1 && n `mod` d == 0))
(const mzero)
(return n)
in testCase "indivisible odds :: strict StateT" $ [3,5,7,11,13,17,19,23,29,31] @=?
(take 10 $ SS.evalStateT oc "state")
, let iota n = msum (map return [1..n])
oddsS = return (1 :: Integer) `mplus` liftM (2+) oddsS
oc = do n <- oddsS
guard (n > 1)
ifte (do d <- iota (n - 1)
guard (d > 1 && n `mod` d == 0))
(const mzero)
(return n)
in testCase "indivisible odds :: strict StateT" $ [3,5,7,11,13,17,19,23,29,31] @=?
(take 10 $ SL.evalStateT oc "state")
]
, testGroup "once (pruning)" $
-- the pruning primitive 'once' selects (non-deterministically)
-- a single candidate from many results and disables any further
-- backtracking on this choice.
let bogosort l = do p <- permute l
if sorted p then return p else mzero
sorted (e:e':r) = e <= e' && sorted (e':r)
sorted _ = True
permute [] = return []
permute (h:t) = do { t' <- permute t; insert h t' }
insert e [] = return [e]
insert e l@(h:t) = return (e:l) `mplus`
do { t' <- insert e t; return (h : t') }
inp = [5,0,3,4,0,1 :: Integer]
in
[
-- without pruning, get two results because 0 appears twice
testCase "no pruning" $ [[0,0,1,3,4,5], [0,0,1,3,4,5]] @=?
observeAll (bogosort inp)
-- with pruning, stops after the first result
, testCase "with pruning" $ [[0,0,1,3,4,5]] @=?
observeAll (once (bogosort inp))
]
]
, testGroup "lnot (inversion)" $
let isEven n = if even n then return n else mzero in
[
testCase "inversion :: LogicT" $ [1,3,5,7,9] @=?
observeMany 5 (do v <- foldr (mplus . return) mzero [(1::Integer)..]
lnot (isEven v)
return v)
, testCase "inversion :: []" $ [1,3,5,7,9] @=?
(take 5 $ do v <- [(1::Integer)..]
lnot (isEven v)
return v)
, testCase "inversion :: ReaderT" $ [1,3,5,7,9] @=?
(take 5 $ runReaderT (do v <- foldr (mplus . return) mzero [(1::Integer)..]
lnot (isEven v)
return v) "env")
#if MIN_VERSION_mtl(2,3,0)
, testCase "inversion :: CPS WriterT" $ [1,3,5,7,9] @=?
(take 5 $ (evalWriterT :: CpsW.WriterT [Char] [] Integer -> [Integer])
(do v <- foldr (mplus . return) mzero [(1::Integer)..]
lnot (isEven v)
return v))
#endif
, testCase "inversion :: strict StateT" $ [1,3,5,7,9] @=?
(take 5 $ SS.evalStateT (do v <- foldr (mplus . return) mzero [(1::Integer)..]
lnot (isEven v)
return v) "state")
, testCase "inversion :: lazy StateT" $ [1,3,5,7,9] @=?
(take 5 $ SL.evalStateT (do v <- foldr (mplus . return) mzero [(1::Integer)..]
lnot (isEven v)
return v) "state")
]
]
safely :: IO Integer -> IO (Either String Integer)
safely o = fmap (left (head . lines . show)) (try o :: IO (Either SomeException Integer))
-- | This is used to test logic operations that don't typically
-- terminate by running a parallel race between the operation and a
-- timer. A result of @Left ()@ means that the timer won and the
-- operation did not terminate within that time period.
nonTerminating :: IO a -> IO (Either () a)
nonTerminating op = race (threadDelay 100000) op -- returns Left () after 0.1s
|