1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE TypeFamilies #-}
-- |
-- Module : Numeric.RootFinding
-- Copyright : (c) 2011 Bryan O'Sullivan, 2018 Alexey Khudyakov
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : portable
--
-- Haskell functions for finding the roots of real functions of real
-- arguments. These algorithms are iterative so we provide both
-- function returning root (or failure to find root) and list of
-- iterations.
module Numeric.RootFinding
( -- * Data types
Root(..)
, fromRoot
, Tolerance(..)
, withinTolerance
, IterationStep(..)
, findRoot
-- * Ridders algorithm
, RiddersParam(..)
, ridders
, riddersIterations
, RiddersStep(..)
-- * Newton-Raphson algorithm
, NewtonParam(..)
, newtonRaphson
, newtonRaphsonIterations
, NewtonStep(..)
-- * References
-- $references
) where
import Control.Applicative (Alternative(..))
import Control.Monad (MonadPlus(..), ap)
import Control.DeepSeq (NFData(..))
import Data.Data (Data, Typeable)
import Data.Default.Class
import GHC.Generics (Generic)
import Numeric.MathFunctions.Comparison (within,eqRelErr)
import Numeric.MathFunctions.Constants (m_epsilon)
----------------------------------------------------------------
-- Data types
----------------------------------------------------------------
-- | The result of searching for a root of a mathematical function.
data Root a
= NotBracketed
-- ^ The function does not have opposite signs when
-- evaluated at the lower and upper bounds of the search.
| SearchFailed
-- ^ The search failed to converge to within the given
-- error tolerance after the given number of iterations.
| Root !a
-- ^ A root was successfully found.
deriving (Eq, Read, Show, Typeable, Data, Foldable, Traversable, Functor, Generic)
instance (NFData a) => NFData (Root a) where
rnf NotBracketed = ()
rnf SearchFailed = ()
rnf (Root a) = rnf a
instance Applicative Root where
pure = Root
(<*>) = ap
instance Monad Root where
NotBracketed >>= _ = NotBracketed
SearchFailed >>= _ = SearchFailed
Root a >>= f = f a
return = pure
instance MonadPlus Root where
mzero = empty
mplus = (<|>)
instance Alternative Root where
empty = NotBracketed
r@Root{} <|> _ = r
_ <|> r@Root{} = r
NotBracketed <|> r = r
r <|> NotBracketed = r
_ <|> r = r
-- | Returns either the result of a search for a root, or the default
-- value if the search failed.
fromRoot :: a -- ^ Default value.
-> Root a -- ^ Result of search for a root.
-> a
fromRoot _ (Root a) = a
fromRoot a _ = a
-- | Error tolerance for finding root. It describes when root finding
-- algorithm should stop trying to improve approximation.
data Tolerance
= RelTol !Double
-- ^ Relative error tolerance. Given @RelTol ε@ two values are
-- considered approximately equal if
-- \[ \frac{|a - b|}{|\operatorname{max}(a,b)} < \varepsilon \]
| AbsTol !Double
-- ^ Absolute error tolerance. Given @AbsTol δ@ two values are
-- considered approximately equal if \[ |a - b| < \delta \].
-- Note that @AbsTol 0@ could be used to require to find
-- approximation within machine precision.
deriving (Eq, Read, Show, Typeable, Data, Generic)
-- | Check that two values are approximately equal. In addition to
-- specification values are considered equal if they're within 1ulp
-- of precision. No further improvement could be done anyway.
withinTolerance :: Tolerance -> Double -> Double -> Bool
withinTolerance _ a b
| within 1 a b = True
withinTolerance (RelTol eps) a b = eqRelErr eps a b
withinTolerance (AbsTol tol) a b = abs (a - b) < tol
-- | Type class for checking whether iteration converged already.
class IterationStep a where
-- | Return @Just root@ is current iteration converged within
-- required error tolerance. Returns @Nothing@ otherwise.
matchRoot :: Tolerance -> a -> Maybe (Root Double)
-- | Find root in lazy list of iterations.
findRoot :: IterationStep a
=> Int -- ^ Maximum
-> Tolerance -- ^ Error tolerance
-> [a]
-> Root Double
findRoot maxN tol = go 0
where
go !i _ | i >= maxN = SearchFailed
go !_ [] = SearchFailed
go i (x:xs) = case matchRoot tol x of
Just r -> r
Nothing -> go (i+1) xs
{-# INLINABLE findRoot #-}
{-# SPECIALIZE findRoot :: Int -> Tolerance -> [RiddersStep] -> Root Double #-}
{-# SPECIALIZE findRoot :: Int -> Tolerance -> [NewtonStep] -> Root Double #-}
----------------------------------------------------------------
-- Attaching information to roots
----------------------------------------------------------------
-- | Parameters for 'ridders' root finding
data RiddersParam = RiddersParam
{ riddersMaxIter :: !Int
-- ^ Maximum number of iterations. Default = 100
, riddersTol :: !Tolerance
-- ^ Error tolerance for root approximation. Default is relative
-- error 4·ε, where ε is machine precision.
}
deriving (Eq, Read, Show, Typeable, Data, Generic)
instance Default RiddersParam where
def = RiddersParam
{ riddersMaxIter = 100
, riddersTol = RelTol (4 * m_epsilon)
}
-- | Single Ridders step. It's a bracket of root
data RiddersStep
= RiddersStep !Double !Double
-- ^ Ridders step. Parameters are bracket for the root
| RiddersBisect !Double !Double
-- ^ Bisection step. It's fallback which is taken when Ridders
-- update takes us out of bracket
| RiddersRoot !Double
-- ^ Root found
| RiddersNoBracket
-- ^ Root is not bracketed
deriving (Eq, Read, Show, Typeable, Data, Generic)
instance NFData RiddersStep where
rnf x = x `seq` ()
instance IterationStep RiddersStep where
matchRoot tol r = case r of
RiddersRoot x -> Just $ Root x
RiddersNoBracket -> Just NotBracketed
RiddersStep a b
| withinTolerance tol a b -> Just $ Root ((a + b) / 2)
| otherwise -> Nothing
RiddersBisect a b
| withinTolerance tol a b -> Just $ Root ((a + b) / 2)
| otherwise -> Nothing
-- | Use the method of Ridders[Ridders1979] to compute a root of a
-- function. It doesn't require derivative and provide quadratic
-- convergence (number of significant digits grows quadratically
-- with number of iterations).
--
-- The function must have opposite signs when evaluated at the lower
-- and upper bounds of the search (i.e. the root must be
-- bracketed). If there's more that one root in the bracket
-- iteration will converge to some root in the bracket.
ridders
:: RiddersParam -- ^ Parameters for algorithms. @def@
-- provides reasonable defaults
-> (Double,Double) -- ^ Bracket for root
-> (Double -> Double) -- ^ Function to find roots
-> Root Double
ridders p bracket fun
= findRoot (riddersMaxIter p) (riddersTol p)
$ riddersIterations bracket fun
-- | List of iterations for Ridders methods. See 'ridders' for
-- documentation of parameters
riddersIterations :: (Double,Double) -> (Double -> Double) -> [RiddersStep]
riddersIterations (lo,hi) f
| flo == 0 = [RiddersRoot lo]
| fhi == 0 = [RiddersRoot hi]
-- root is not bracketed
| flo*fhi > 0 = [RiddersNoBracket]
-- Ensure that a<b in iterations
| lo < hi = RiddersStep lo hi : go lo flo hi fhi
| otherwise = RiddersStep lo hi : go hi fhi lo flo
where
flo = f lo
fhi = f hi
--
go !a !fa !b !fb
| fm == 0 = [RiddersRoot m]
| fn == 0 = [RiddersRoot n]
-- Ridder's approximation coincide with one of old bounds or
-- went out of (a,b) range due to numerical problems. Revert
-- to bisection
| n <= a || n >= b = case () of
_| fm*fa < 0 -> recBisect a fa m fm
| otherwise -> recBisect m fm b fb
| fn*fm < 0 = recRidders n fn m fm
| fn*fa < 0 = recRidders a fa n fn
| otherwise = recRidders n fn b fb
where
recBisect x fx y fy = RiddersBisect x y : go x fx y fy
recRidders x fx y fy = RiddersStep x y : go x fx y fy
--
dm = (b - a) * 0.5
-- Mean point
m = (a + b) / 2
fm = f m
-- Ridders update
n = m - signum (fb - fa) * dm * fm / sqrt(fm*fm - fa*fb)
fn = f n
----------------------------------------------------------------
-- Newton-Raphson algorithm
----------------------------------------------------------------
-- | Parameters for 'ridders' root finding
data NewtonParam = NewtonParam
{ newtonMaxIter :: !Int
-- ^ Maximum number of iterations. Default = 50
, newtonTol :: !Tolerance
-- ^ Error tolerance for root approximation. Default is relative
-- error 4·ε, where ε is machine precision
}
deriving (Eq, Read, Show, Typeable, Data, Generic)
instance Default NewtonParam where
def = NewtonParam
{ newtonMaxIter = 50
, newtonTol = RelTol (4 * m_epsilon)
}
-- | Steps for Newton iterations
data NewtonStep
= NewtonStep !Double !Double
-- ^ Normal Newton-Raphson update. Parameters are: old guess, new guess
| NewtonBisection !Double !Double
-- ^ Bisection fallback when Newton-Raphson iteration doesn't
-- work. Parameters are bracket on root
| NewtonRoot !Double
-- ^ Root is found
| NewtonNoBracket
-- ^ Root is not bracketed
deriving (Eq, Read, Show, Typeable, Data, Generic)
instance NFData NewtonStep where
rnf x = x `seq` ()
instance IterationStep NewtonStep where
matchRoot tol r = case r of
NewtonRoot x -> Just (Root x)
NewtonNoBracket -> Just NotBracketed
NewtonStep x x'
| withinTolerance tol x x' -> Just (Root x')
| otherwise -> Nothing
NewtonBisection a b
| withinTolerance tol a b -> Just (Root ((a + b) / 2))
| otherwise -> Nothing
{-# INLINE matchRoot #-}
-- | Solve equation using Newton-Raphson iterations.
--
-- This method require both initial guess and bounds for root. If
-- Newton step takes us out of bounds on root function reverts to
-- bisection.
newtonRaphson
:: NewtonParam -- ^ Parameters for algorithm. @def@
-- provide reasonable defaults.
-> (Double,Double,Double) -- ^ Triple of @(low bound, initial
-- guess, upper bound)@. If initial
-- guess if out of bracket middle
-- of bracket is taken as
-- approximation
-> (Double -> (Double,Double)) -- ^ Function to find root of. It
-- returns pair of function value and
-- its first derivative
-> Root Double
newtonRaphson p guess fun
= findRoot (newtonMaxIter p) (newtonTol p)
$ newtonRaphsonIterations guess fun
-- | List of iteration for Newton-Raphson algorithm. See documentation
-- for 'newtonRaphson' for meaning of parameters.
newtonRaphsonIterations :: (Double,Double,Double) -> (Double -> (Double,Double)) -> [NewtonStep]
newtonRaphsonIterations (lo,guess,hi) function
| flo == 0 = [NewtonRoot lo]
| fhi == 0 = [NewtonRoot hi]
| flo*fhi > 0 = [NewtonNoBracket]
-- Ensure that function value on low bound is negative
| flo > 0 = go hi guess' lo
| otherwise = go lo guess hi
where
(flo,_) = function lo
(fhi,_) = function hi
-- Ensure that initial guess is within bracket
guess'
| guess >= lo && guess <= hi = guess
| guess >= hi && guess <= lo = guess
| otherwise = (lo + hi) / 2
-- Newton iterations. Invariant:
-- > f xA < 0
-- > f xB > 0
go xA x xB
| f == 0 = [NewtonRoot x]
| f' == 0 = bisectionStep
-- Accept Newton step since it stays within bracket.
| (x' - xA) * (x' - xB) < 0 = newtonStep
-- Otherwise bracket root and pick new approximation as
-- midpoint.
| otherwise = bisectionStep
where
-- Calculate Newton step
(f,f') = function x
x' = x - f / f'
-- Newton step
newtonStep
| f > 0 = NewtonStep x x' : go xA x' x
| otherwise = NewtonStep x x' : go x x' xB
-- Fallback bisection step
bisectionStep
| f > 0 = NewtonBisection xA x : go xA ((xA + x) / 2) x
| otherwise = NewtonBisection x xB : go x ((x + xB) / 2) xB
----------------------------------------------------------------
-- Internal functions
----------------------------------------------------------------
-- $references
--
-- * Ridders, C.F.J. (1979) A new algorithm for computing a single
-- root of a real continuous function.
-- /IEEE Transactions on Circuits and Systems/ 26:979–980.
--
-- * Press W.H.; Teukolsky S.A.; Vetterling W.T.; Flannery B.P.
-- (2007). \"Section 9.2.1. Ridders' Method\". /Numerical Recipes: The
-- Art of Scientific Computing (3rd ed.)./ New York: Cambridge
-- University Press. ISBN 978-0-521-88068-8.
|