File: Series.hs

package info (click to toggle)
haskell-math-functions 0.3.4.4-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,132 kB
  • sloc: haskell: 2,675; python: 121; makefile: 2
file content (180 lines) | stat: -rw-r--r-- 5,101 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
{-# LANGUAGE BangPatterns              #-}
{-# LANGUAGE ExistentialQuantification #-}
-- |
-- Module    : Numeric.Series
-- Copyright : (c) 2016 Alexey Khudyakov
-- License   : BSD3
--
-- Maintainer  : alexey.skladnoy@gmail.com, bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- Functions for working with infinite sequences. In particular
-- summation of series and evaluation of continued fractions.
module Numeric.Series (
    -- * Data type for infinite sequences.
    Sequence(..)
    -- * Constructors
  , enumSequenceFrom
  , enumSequenceFromStep
  , scanSequence
    -- * Summation of series
  , sumSeries
  , sumPowerSeries
  , sequenceToList
    -- * Evaluation of continued fractions
  , evalContFractionB
  ) where

import Control.Applicative
import Data.List (unfoldr)

import Numeric.MathFunctions.Constants (m_epsilon)


----------------------------------------------------------------

-- | Infinite series. It's represented as opaque state and step
--   function.
data Sequence a = forall s. Sequence s (s -> (a,s))

instance Functor Sequence where
  fmap f (Sequence s0 step) = Sequence s0 (\s -> let (a,s') = step s in (f a, s'))
  {-# INLINE fmap #-}

instance Applicative Sequence where
  pure a = Sequence () (\() -> (a,()))
  Sequence sA fA <*> Sequence sB fB = Sequence (sA,sB) $ \(!sa,!sb) ->
    let (a,sa') = fA sa
        (b,sb') = fB sb
    in (a b, (sa',sb'))
  {-# INLINE pure  #-}
  {-# INLINE (<*>) #-}

-- | Elementwise operations with sequences
instance Num a => Num (Sequence a) where
  (+) = liftA2 (+)
  (*) = liftA2 (*)
  (-) = liftA2 (-)
  {-# INLINE (+) #-}
  {-# INLINE (*) #-}
  {-# INLINE (-) #-}
  abs         = fmap abs
  signum      = fmap signum
  fromInteger = pure . fromInteger
  {-# INLINE abs         #-}
  {-# INLINE signum      #-}
  {-# INLINE fromInteger #-}

-- | Elementwise operations with sequences
instance Fractional a => Fractional (Sequence a) where
  (/)          = liftA2 (/)
  recip        = fmap recip
  fromRational = pure . fromRational
  {-# INLINE (/)          #-}
  {-# INLINE recip        #-}
  {-# INLINE fromRational #-}



----------------------------------------------------------------
-- Constructors
----------------------------------------------------------------

-- | @enumSequenceFrom x@ generate sequence:
--
-- \[ a_n = x + n \]
enumSequenceFrom :: Num a => a -> Sequence a
enumSequenceFrom i = Sequence i (\n -> (n,n+1))
{-# INLINE enumSequenceFrom #-}

-- | @enumSequenceFromStep x d@ generate sequence:
--
-- \[ a_n = x + nd \]
enumSequenceFromStep :: Num a => a -> a -> Sequence a
enumSequenceFromStep n d = Sequence n (\i -> (i,i+d))
{-# INLINE enumSequenceFromStep #-}

-- | Analog of 'scanl' for sequence.
scanSequence :: (b -> a -> b) -> b -> Sequence a -> Sequence b
{-# INLINE scanSequence #-}
scanSequence f b0 (Sequence s0 step) = Sequence (b0,s0) $ \(b,s) ->
  let (a,s') = step s
      b'     = f b a
  in (b,(b',s'))


----------------------------------------------------------------
-- Evaluation of series
----------------------------------------------------------------

-- | Calculate sum of series
--
-- \[ \sum_{i=0}^\infty a_i \]
--
-- Summation is stopped when
--
-- \[ a_{n+1} < \varepsilon\sum_{i=0}^n a_i \]
--
-- where ε is machine precision ('m_epsilon')
sumSeries :: Sequence Double -> Double
{-# INLINE sumSeries #-}
sumSeries (Sequence sInit step)
  = go x0 s0
  where 
    (x0,s0) = step sInit
    go x s | abs (d/x) >= m_epsilon = go x' s'
           | otherwise              = x'
      where (d,s') = step s
            x'     = x + d

-- | Calculate sum of series
--
-- \[ \sum_{i=0}^\infty x^ia_i \]
--
-- Calculation is stopped when next value in series is less than
-- ε·sum.
sumPowerSeries :: Double -> Sequence Double -> Double
sumPowerSeries x ser = sumSeries $ liftA2 (*) (scanSequence (*) 1 (pure x)) ser
{-# INLINE sumPowerSeries #-}

-- | Convert series to infinite list
sequenceToList :: Sequence a -> [a]
sequenceToList (Sequence s f) = unfoldr (Just . f) s



----------------------------------------------------------------
-- Evaluation of continued fractions
----------------------------------------------------------------

-- |
-- Evaluate continued fraction using modified Lentz algorithm.
-- Sequence contain pairs (a[i],b[i]) which form following expression:
--
-- \[
-- b_0 + \frac{a_1}{b_1+\frac{a_2}{b_2+\frac{a_3}{b_3 + \cdots}}}
-- \]
--
-- Modified Lentz algorithm is described in Numerical recipes 5.2
-- "Evaluation of Continued Fractions"
evalContFractionB :: Sequence (Double,Double) -> Double
{-# INLINE evalContFractionB #-}
evalContFractionB (Sequence sInit step)
  = let ((_,b0),s0) = step sInit
        f0          = maskZero b0
    in  go f0 f0 0 s0
  where
    tiny = 1e-60
    maskZero 0 = tiny
    maskZero x = x
    
    go f c d s
      | abs (delta - 1) >= m_epsilon = go f' c' d' s'
      | otherwise                    = f'
      where
          ((a,b),s') = step s
          d'    = recip $ maskZero $ b + a*d
          c'    = maskZero $ b + a/c 
          delta = c'*d'
          f'    = f*delta