File: Internal.hs

package info (click to toggle)
haskell-math-functions 0.3.4.4-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,132 kB
  • sloc: haskell: 2,675; python: 121; makefile: 2
file content (1381 lines) | stat: -rw-r--r-- 48,434 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
{-# LANGUAGE BangPatterns, ScopedTypeVariables #-}
{-# OPTIONS_HADDOCK hide #-}
-- |
-- Module    : Numeric.SpecFunctions.Internal
-- Copyright : (c) 2009, 2011, 2012 Bryan O'Sullivan
-- License   : BSD3
--
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- Internal module with implementation of special functions.
module Numeric.SpecFunctions.Internal
    ( module Numeric.SpecFunctions.Internal
    , Compat.log1p
    , Compat.expm1
    ) where

import Data.Bits          ((.&.), (.|.), shiftR)
import Data.Int           (Int64)
import Data.Default.Class
import qualified Data.Vector.Unboxed as U
import           Data.Vector.Unboxed   ((!))
import Text.Printf

import Numeric.Polynomial.Chebyshev    (chebyshevBroucke)
import Numeric.Polynomial              (evaluatePolynomial, evaluatePolynomialL, evaluateEvenPolynomialL
                                       ,evaluateOddPolynomialL)
import Numeric.RootFinding             (Root(..), newtonRaphson, NewtonParam(..), Tolerance(..))
import Numeric.Series
import Numeric.MathFunctions.Constants
import Numeric.SpecFunctions.Compat (log1p)
import qualified Numeric.SpecFunctions.Compat as Compat

----------------------------------------------------------------
-- Error function
----------------------------------------------------------------

-- | Error function.
--
-- \[
-- \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-t^2) dt
-- \]
--
-- Function limits are:
--
-- \[
-- \begin{aligned}
--  &\operatorname{erf}(-\infty) &=& -1 \\
--  &\operatorname{erf}(0)       &=& \phantom{-}\,0 \\
--  &\operatorname{erf}(+\infty) &=& \phantom{-}\,1 \\
-- \end{aligned}
-- \]
erf :: Double -> Double
erf = Compat.erf
{-# INLINE erf #-}

-- | Complementary error function.
--
-- \[
-- \operatorname{erfc}(x) = 1 - \operatorname{erf}(x)
-- \]
--
-- Function limits are:
--
-- \[
-- \begin{aligned}
--  &\operatorname{erf}(-\infty) &=&\, 2 \\
--  &\operatorname{erf}(0)       &=&\, 1 \\
--  &\operatorname{erf}(+\infty) &=&\, 0 \\
-- \end{aligned}
-- \]
erfc :: Double -> Double
erfc = Compat.erfc
{-# INLINE erfc #-}

-- | Inverse of 'erf'.
invErf :: Double -- ^ /p/ ∈ [-1,1]
       -> Double
invErf p
  | p ==  1         = m_pos_inf
  | p == -1         = m_neg_inf
  | p < 1 && p > -1 = if p > 0 then r else -r
  | otherwise       = error "invErf: p must in [-1,1] range"
  where
    -- We solve equation same as in invErfc. We're able to ruse same
    -- Halley step by solving equation:
    --   > pp - erf x = 0
    -- instead of
    --   > erf x - pp = 0
    pp     = abs p
    r      = step $ step $ guessInvErfc $ 1 - pp
    step x = invErfcHalleyStep (pp - erf x) x

-- | Inverse of 'erfc'.
invErfc :: Double -- ^ /p/ ∈ [0,2]
        -> Double
invErfc p
  | p == 2        = m_neg_inf
  | p == 0        = m_pos_inf
  | p >0 && p < 2 = if p <= 1 then r else -r
  | otherwise     = modErr $ "invErfc: p must be in [0,2] got " ++ show p
  where
    pp | p <= 1    = p
       | otherwise = 2 - p
    -- We perform 2 Halley steps in order to get to solution
    r      = step $ step $ guessInvErfc pp
    step x = invErfcHalleyStep (erfc x - pp) x

-- Initial guess for invErfc & invErf
guessInvErfc :: Double -> Double
guessInvErfc p
  = -0.70711 * ((2.30753 + t * 0.27061) / (1 + t * (0.99229 + t * 0.04481)) - t)
  where
    t = sqrt $ -2 * log( 0.5 * p)

-- Halley step for solving invErfc
invErfcHalleyStep :: Double -> Double -> Double
invErfcHalleyStep err x
  = x + err / (1.12837916709551257 * exp(-x * x) - x * err)

----------------------------------------------------------------
-- Gamma function
----------------------------------------------------------------

data L = L {-# UNPACK #-} !Double {-# UNPACK #-} !Double

-- | Compute the logarithm of the gamma function, Γ(/x/).
--
-- \[
-- \Gamma(x) = \int_0^{\infty}t^{x-1}e^{-t}\,dt = (x - 1)!
-- \]
--
-- This implementation uses Lanczos approximation. It gives 14 or more
-- significant decimal digits, except around /x/ = 1 and /x/ = 2,
-- where the function goes to zero.
--
-- Returns &#8734; if the input is outside of the range (0 < /x/
-- &#8804; 1e305).
logGamma :: Double -> Double
logGamma z
  | z <= 0    = m_pos_inf
  -- For very small values z we can just use Laurent expansion
  | z < m_sqrt_eps = log (1/z - m_eulerMascheroni)
  -- For z<1 we use recurrence. Γ(z+1) = z·Γ(z) Note that in order to
  -- avoid precision loss we have to compute parameter to
  -- approximations here:
  --
  -- > (z + 1) - 1 = z
  -- > (z + 1) - 2 = z - 1
  --
  -- Simple passing (z + 1) to piecewise approximations and computing
  -- difference leads to bad loss of precision near 1.
  -- This is reason lgamma1_15 & lgamma15_2 have three parameters
  | z < 0.5   = lgamma1_15 z (z - 1) - log z
  | z < 1     = lgamma15_2 z (z - 1) - log z
  -- Piecewise polynomial approximations
  | z <= 1.5  = lgamma1_15 (z - 1) (z - 2)
  | z < 2     = lgamma15_2 (z - 1) (z - 2)
  | z < 15    = lgammaSmall z
  -- Otherwise we switch to Lanczos approximation
  | otherwise = lanczosApprox z


-- | Synonym for 'logGamma'. Retained for compatibility
logGammaL :: Double -> Double
logGammaL = logGamma
{-# DEPRECATED logGammaL "Use logGamma instead" #-}



-- Polynomial expansion used in interval (1,1.5]
--
-- > logΓ(z) = (z-1)(z-2)(Y + R(z-1))
lgamma1_15 :: Double -> Double -> Double
lgamma1_15 zm1 zm2
   = r * y + r * ( evaluatePolynomial zm1 tableLogGamma_1_15P
                 / evaluatePolynomial zm1 tableLogGamma_1_15Q
                 )
   where
     r = zm1 * zm2
     y = 0.52815341949462890625

tableLogGamma_1_15P,tableLogGamma_1_15Q :: U.Vector Double
tableLogGamma_1_15P = U.fromList
  [  0.490622454069039543534e-1
  , -0.969117530159521214579e-1
  , -0.414983358359495381969e0
  , -0.406567124211938417342e0
  , -0.158413586390692192217e0
  , -0.240149820648571559892e-1
  , -0.100346687696279557415e-2
  ]
{-# NOINLINE tableLogGamma_1_15P #-}
tableLogGamma_1_15Q = U.fromList
  [ 1
  , 0.302349829846463038743e1
  , 0.348739585360723852576e1
  , 0.191415588274426679201e1
  , 0.507137738614363510846e0
  , 0.577039722690451849648e-1
  , 0.195768102601107189171e-2
  ]
{-# NOINLINE tableLogGamma_1_15Q #-}



-- Polynomial expansion used in interval (1.5,2)
--
-- > logΓ(z) = (2-z)(1-z)(Y + R(2-z))
lgamma15_2 :: Double -> Double -> Double
lgamma15_2 zm1 zm2
   = r * y + r * ( evaluatePolynomial (-zm2) tableLogGamma_15_2P
                 / evaluatePolynomial (-zm2) tableLogGamma_15_2Q
                 )
   where
     r = zm1 * zm2
     y = 0.452017307281494140625

tableLogGamma_15_2P,tableLogGamma_15_2Q :: U.Vector Double
tableLogGamma_15_2P = U.fromList
  [ -0.292329721830270012337e-1
  ,  0.144216267757192309184e0
  , -0.142440390738631274135e0
  ,  0.542809694055053558157e-1
  , -0.850535976868336437746e-2
  ,  0.431171342679297331241e-3
  ]
{-# NOINLINE tableLogGamma_15_2P #-}
tableLogGamma_15_2Q = U.fromList
  [  1
  , -0.150169356054485044494e1
  ,  0.846973248876495016101e0
  , -0.220095151814995745555e0
  ,  0.25582797155975869989e-1
  , -0.100666795539143372762e-2
  , -0.827193521891290553639e-6
  ]
{-# NOINLINE tableLogGamma_15_2Q #-}



-- Polynomial expansion used in interval (2,3)
--
-- > logΓ(z) = (z - 2)(z + 1)(Y + R(z-2))
lgamma2_3 :: Double -> Double
lgamma2_3 z
  = r * y + r * ( evaluatePolynomial zm2 tableLogGamma_2_3P
                / evaluatePolynomial zm2 tableLogGamma_2_3Q
                )
  where
    r   = zm2 * (z + 1)
    zm2 = z - 2
    y   = 0.158963680267333984375e0


tableLogGamma_2_3P,tableLogGamma_2_3Q :: U.Vector Double
tableLogGamma_2_3P = U.fromList
  [ -0.180355685678449379109e-1
  ,  0.25126649619989678683e-1
  ,  0.494103151567532234274e-1
  ,  0.172491608709613993966e-1
  , -0.259453563205438108893e-3
  , -0.541009869215204396339e-3
  , -0.324588649825948492091e-4
  ]
{-# NOINLINE tableLogGamma_2_3P #-}
tableLogGamma_2_3Q = U.fromList
  [  1
  ,  0.196202987197795200688e1
  ,  0.148019669424231326694e1
  ,  0.541391432071720958364e0
  ,  0.988504251128010129477e-1
  ,  0.82130967464889339326e-2
  ,  0.224936291922115757597e-3
  , -0.223352763208617092964e-6
  ]
{-# NOINLINE tableLogGamma_2_3Q #-}



-- For small z we can just use Gamma function recurrence and reduce
-- problem to interval [2,3] and use polynomial approximation
-- there. Surprisingly it gives very good precision
lgammaSmall :: Double -> Double
lgammaSmall = go 0
  where
    go acc z | z < 3     = acc + lgamma2_3 z
             | otherwise = go (acc + log zm1) zm1
             where
               zm1 = z - 1


-- Lanczos approximation for gamma function.
--
-- > Γ(z) = sqrt(2π)(z + g - 0.5)^(z - 0.5)·exp{-(z + g - 0.5)}·A_g(z)
--
-- Coefficients are taken from boost. Constants are absorbed into
-- polynomial's coefficients.
lanczosApprox :: Double -> Double
lanczosApprox z
  = (log (z + g - 0.5) - 1) * (z - 0.5)
  + log (evalRatio tableLanczos z)
  where
    g = 6.024680040776729583740234375

tableLanczos :: U.Vector (Double,Double)
{-# NOINLINE tableLanczos #-}
tableLanczos = U.fromList
  [ (56906521.91347156388090791033559122686859    , 0)
  , (103794043.1163445451906271053616070238554    , 39916800)
  , (86363131.28813859145546927288977868422342    , 120543840)
  , (43338889.32467613834773723740590533316085    , 150917976)
  , (14605578.08768506808414169982791359218571    , 105258076)
  , (3481712.15498064590882071018964774556468     , 45995730)
  , (601859.6171681098786670226533699352302507    , 13339535)
  , (75999.29304014542649875303443598909137092    , 2637558)
  , (6955.999602515376140356310115515198987526    , 357423)
  , (449.9445569063168119446858607650988409623    , 32670)
  , (19.51992788247617482847860966235652136208    , 1925)
  , (0.5098416655656676188125178644804694509993   , 66)
  , (0.006061842346248906525783753964555936883222 , 1)
  ]

-- Evaluate rational function. Polynomials in both numerator and
-- denominator must have same order. Function seems to be too specific
-- so it's not exposed
--
-- Special care taken in order to avoid overflow for large values of x
evalRatio :: U.Vector (Double,Double) -> Double -> Double
evalRatio coef x
  | x > 1     = fini $ U.foldl' stepL (L 0 0) coef
  | otherwise = fini $ U.foldr' stepR (L 0 0) coef
  where
    fini (L num den) = num / den
    stepR (a,b) (L num den) = L (num * x  + a) (den * x  + b)
    stepL (L num den) (a,b) = L (num * rx + a) (den * rx + b)
    rx = recip x



-- |
-- Compute the log gamma correction factor for Stirling
-- approximation for @x@ &#8805; 10.  This correction factor is
-- suitable for an alternate (but less numerically accurate)
-- definition of 'logGamma':
--
-- \[
-- \log\Gamma(x) = \frac{1}{2}\log(2\pi) + (x-\frac{1}{2})\log x - x + \operatorname{logGammaCorrection}(x)
-- \]
logGammaCorrection :: Double -> Double
logGammaCorrection x
    | x < 10    = m_NaN
    | x < big   = chebyshevBroucke (t * t * 2 - 1) coeffs / x
    | otherwise = 1 / (x * 12)
  where
    big    = 94906265.62425156
    t      = 10 / x
    coeffs = U.fromList [
               0.1666389480451863247205729650822e+0,
              -0.1384948176067563840732986059135e-4,
               0.9810825646924729426157171547487e-8,
              -0.1809129475572494194263306266719e-10,
               0.6221098041892605227126015543416e-13,
              -0.3399615005417721944303330599666e-15,
               0.2683181998482698748957538846666e-17
             ]



-- | Compute the normalized lower incomplete gamma function
-- γ(/z/,/x/). Normalization means that γ(/z/,∞)=1
--
-- \[
-- \gamma(z,x) = \frac{1}{\Gamma(z)}\int_0^{x}t^{z-1}e^{-t}\,dt
-- \]
--
-- Uses Algorithm AS 239 by Shea.
incompleteGamma :: Double       -- ^ /z/ ∈ (0,∞)
                -> Double       -- ^ /x/ ∈ (0,∞)
                -> Double
-- Notation used:
--  + P(a,x) - regularized lower incomplete gamma
--  + Q(a,x) - regularized upper incomplete gamma
incompleteGamma a x
  | a <= 0 || x < 0 = error
     $ "incompleteGamma: Domain error z=" ++ show a ++ " x=" ++ show x
  | x == 0          = 0
  | x == m_pos_inf  = 1
  -- For very small x we use following expansion for P:
  --
  -- See http://functions.wolfram.com/GammaBetaErf/GammaRegularized/06/01/05/01/01/
  | x < sqrt m_epsilon && a > 1
    = x**a / a / exp (logGamma a) * (1 - a*x / (a + 1))
  | x < 0.5 = case () of
    _| (-0.4)/log x < a  -> taylorSeriesP
     | otherwise         -> taylorSeriesComplQ
  | x < 1.1 = case () of
    _| 0.75*x < a        -> taylorSeriesP
     | otherwise         -> taylorSeriesComplQ
  | a > 20 && useTemme    = uniformExpansion
  | x - (1 / (3 * x)) < a = taylorSeriesP
  | otherwise             = contFraction
  where
    mu = (x - a) / a
    useTemme = (a > 200 && 20/a > mu*mu)
            || (abs mu < 0.4)
    -- Gautschi's algorithm.
    --
    -- Evaluate series for P(a,x). See [Temme1994] Eq. 5.5 and [NOTE:
    -- incompleteGamma.taylorP]
    factorP
      | a < 10     = x ** a
                   / (exp x * exp (logGamma (a + 1)))
      | a < 1182.5 = (x * exp 1 / a) ** a
                   / exp x
                   / sqrt (2*pi*a)
                   / exp (logGammaCorrection a)
      | otherwise  = (x * exp 1 / a * exp (-x/a)) ** a
                   / sqrt (2*pi*a)
                   / exp (logGammaCorrection a)
    taylorSeriesP
      = sumPowerSeries x (scanSequence (/) 1 $ enumSequenceFrom (a+1))
      * factorP
    -- Series for 1-Q(a,x). See [Temme1994] Eq. 5.5
    taylorSeriesComplQ
      = sumPowerSeries (-x) (scanSequence (/) 1 (enumSequenceFrom 1) / enumSequenceFrom a)
      * x**a / exp(logGamma a)
    -- Legendre continued fractions
    contFraction = 1 - ( exp ( log x * a - x - logGamma a )
                       / evalContFractionB frac
                       )
      where
        frac = (\k -> (k*(a-k), x - a + 2*k + 1)) <$> enumSequenceFrom 0
    -- Evaluation based on uniform expansions. See [Temme1994] 5.2
    uniformExpansion =
      let -- Coefficients f_m in paper
          fm :: U.Vector Double
          fm = U.fromList [ 1.00000000000000000000e+00
                          ,-3.33333333333333370341e-01
                          , 8.33333333333333287074e-02
                          ,-1.48148148148148153802e-02
                          , 1.15740740740740734316e-03
                          , 3.52733686067019369930e-04
                          ,-1.78755144032921825352e-04
                          , 3.91926317852243766954e-05
                          ,-2.18544851067999240532e-06
                          ,-1.85406221071515996597e-06
                          , 8.29671134095308545622e-07
                          ,-1.76659527368260808474e-07
                          , 6.70785354340149841119e-09
                          , 1.02618097842403069078e-08
                          ,-4.38203601845335376897e-09
                          , 9.14769958223679020897e-10
                          ,-2.55141939949462514346e-11
                          ,-5.83077213255042560744e-11
                          , 2.43619480206674150369e-11
                          ,-5.02766928011417632057e-12
                          , 1.10043920319561347525e-13
                          , 3.37176326240098513631e-13
                          ]
          y   = - log1pmx mu
          eta = sqrt (2 * y) * signum mu
          -- Evaluate S_α (Eq. 5.9)
          loop !_  !_  u 0 = u
          loop bm1 bm0 u i = let t  = (fm ! i) + (fromIntegral i + 1)*bm1 / a
                                 u' = eta * u + t
                             in  loop bm0 t u' (i-1)
          s_a = let n = U.length fm
                in  loop (fm ! (n-1)) (fm ! (n-2)) 0 (n-3)
                  / exp (logGammaCorrection a)
      in 1/2 * erfc(-eta*sqrt(a/2)) - exp(-(a*y)) / sqrt (2*pi*a) * s_a



-- Adapted from Numerical Recipes §6.2.1

-- | Inverse incomplete gamma function. It's approximately inverse of
--   'incompleteGamma' for the same /z/. So following equality
--   approximately holds:
--
-- > invIncompleteGamma z . incompleteGamma z ≈ id
invIncompleteGamma :: Double    -- ^ /z/ ∈ (0,∞)
                   -> Double    -- ^ /p/ ∈ [0,1]
                   -> Double
invIncompleteGamma a p
  | a <= 0         =
      modErr $ printf "invIncompleteGamma: a must be positive. a=%g p=%g" a p
  | p < 0 || p > 1 =
      modErr $ printf "invIncompleteGamma: p must be in [0,1] range. a=%g p=%g" a p
  | p == 0         = 0
  | p == 1         = 1 / 0
  | otherwise      = loop 0 guess
  where
    -- Solve equation γ(a,x) = p using Halley method
    loop :: Int -> Double -> Double
    loop i x
      | i >= 12           = x'
      -- For small s derivative becomes approximately 1/x*exp(-x) and
      -- skyrockets for small x. If it happens correct answer is 0.
      | isInfinite f'     = 0
      | abs dx < eps * x' = x'
      | otherwise         = loop (i + 1) x'
      where
        -- Value of γ(a,x) - p
        f    = incompleteGamma a x - p
        -- dγ(a,x)/dx
        f'   | a > 1     = afac * exp( -(x - a1) + a1 * (log x - lna1))
             | otherwise = exp( -x + a1 * log x - gln)
        u    = f / f'
        -- Halley correction to Newton-Rapson step
        corr = u * (a1 / x - 1)
        dx   = u / (1 - 0.5 * min 1.0 corr)
        -- New approximation to x
        x'   | x < dx    = 0.5 * x -- Do not go below 0
             | otherwise = x - dx
    -- Calculate initial guess for root
    guess
      --
      | a > 1   =
         let t  = sqrt $ -2 * log(if p < 0.5 then p else 1 - p)
             x1 = (2.30753 + t * 0.27061) / (1 + t * (0.99229 + t * 0.04481)) - t
             x2 = if p < 0.5 then -x1 else x1
         in max 1e-3 (a * (1 - 1/(9*a) - x2 / (3 * sqrt a)) ** 3)
      -- For a <= 1 use following approximations:
      --   γ(a,1) ≈ 0.253a + 0.12a²
      --
      --   γ(a,x) ≈ γ(a,1)·x^a                               x <  1
      --   γ(a,x) ≈ γ(a,1) + (1 - γ(a,1))(1 - exp(1 - x))    x >= 1
      | otherwise =
         let t = 1 - a * (0.253 + a*0.12)
         in if p < t
            then (p / t) ** (1 / a)
            else 1 - log( 1 - (p-t) / (1-t))
    -- Constants
    a1   = a - 1
    lna1 = log a1
    afac = exp( a1 * (lna1 - 1) - gln )
    gln  = logGamma a
    eps  = 1e-8



----------------------------------------------------------------
-- Beta function
----------------------------------------------------------------

-- | Compute the natural logarithm of the beta function.
--
-- \[
-- B(a,b) = \int_0^1 t^{a-1}(1-t)^{b-1}\,dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}
-- \]
logBeta
  :: Double                     -- ^ /a/ > 0
  -> Double                     -- ^ /b/ > 0
  -> Double
logBeta a b
  | p < 0     = m_NaN
  | p == 0    = m_pos_inf
  | p >= 10   = allStirling
  | q >= 10   = twoStirling
  -- This order of summands marginally improves precision
  | otherwise = logGamma p + (logGamma q - logGamma pq)
  where
    p   = min a b
    q   = max a b
    ppq = p / pq
    pq  = p + q
    -- When both parameters are large than 10 we can use Stirling
    -- approximation with correction. It's more precise than sum of
    -- logarithms of gamma functions
    allStirling
      = log q * (-0.5)
      + m_ln_sqrt_2_pi
      + logGammaCorrection p
      + (logGammaCorrection q - logGammaCorrection pq)
      + (p - 0.5) * log ppq
      + q * log1p(-ppq)
    -- Otherwise only two of three gamma functions use Stirling
    -- approximation
    twoStirling
      = logGamma p
      + (logGammaCorrection q - logGammaCorrection pq)
      + p
      - p * log pq
      + (q - 0.5) * log1p(-ppq)


-- | Regularized incomplete beta function.
--
-- \[
-- I(x;a,b) = \frac{1}{B(a,b)} \int_0^x t^{a-1}(1-t)^{b-1}\,dt
-- \]
--
-- Uses algorithm AS63 by Majumder and Bhattachrjee and quadrature
-- approximation for large /p/ and /q/.
incompleteBeta :: Double -- ^ /a/ > 0
               -> Double -- ^ /b/ > 0
               -> Double -- ^ /x/, must lie in [0,1] range
               -> Double
incompleteBeta p q = incompleteBeta_ (logBeta p q) p q

-- | Regularized incomplete beta function. Same as 'incompleteBeta'
-- but also takes logarithm of beta function as parameter.
incompleteBeta_ :: Double -- ^ logarithm of beta function for given /p/ and /q/
                -> Double -- ^ /a/ > 0
                -> Double -- ^ /b/ > 0
                -> Double -- ^ /x/, must lie in [0,1] range
                -> Double
incompleteBeta_ beta p q x
  | p <= 0 || q <= 0            =
      modErr $ printf "incompleteBeta_: p <= 0 || q <= 0. p=%g q=%g x=%g" p q x
  | x <  0 || x >  1 || isNaN x =
      modErr $ printf "incompleteBeta_: x out of [0,1] range. p=%g q=%g x=%g" p q x
  | x == 0 || x == 1            = x
  | p >= (p+q) * x   = incompleteBetaWorker beta p q x
  | otherwise        = 1 - incompleteBetaWorker beta q p (1 - x)


-- Approximation of incomplete beta by quadrature.
--
-- Note that x =< p/(p+q)
incompleteBetaApprox :: Double -> Double -> Double -> Double -> Double
incompleteBetaApprox beta p q x
  | ans > 0   = 1 - ans
  | otherwise = -ans
  where
    -- Constants
    p1    = p - 1
    q1    = q - 1
    mu    = p / (p + q)
    lnmu  = log     mu
    lnmuc = log1p (-mu)
    -- Upper limit for integration
    xu = max 0 $ min (mu - 10*t) (x - 5*t)
       where
         t = sqrt $ p*q / ( (p+q) * (p+q) * (p + q + 1) )
    -- Calculate incomplete beta by quadrature
    go y w = let t = x + (xu - x) * y
             in  w * exp( p1 * (log t - lnmu) + q1 * (log(1-t) - lnmuc) )
    s   = U.sum $ U.zipWith go coefY coefW
    ans = s * (xu - x) * exp( p1 * lnmu + q1 * lnmuc - beta )


-- Worker for incomplete beta function. It is separate function to
-- avoid confusion with parameter during parameter swapping
incompleteBetaWorker :: Double -> Double -> Double -> Double -> Double
incompleteBetaWorker beta p q x
  -- For very large p and q this method becomes very slow so another
  -- method is used.
  | p > 3000 && q > 3000 = incompleteBetaApprox beta p q x
  | otherwise            = loop (p+q) (truncate $ q + cx * (p+q)) 1 1 1
  where
    -- Constants
    eps = 1e-15
    cx  = 1 - x
    -- Common multiplies for expansion. Accurate calculation is a bit
    -- tricky. Performing calculation in log-domain leads to slight
    -- loss of precision for small x, while using ** prone to
    -- underflows.
    --
    -- If either beta function of x**p·(1-x)**(q-1) underflows we
    -- switch to log domain. It could waste work but there's no easy
    -- switch criterion.
    factor
      | beta < m_min_log || prod < m_tiny = exp( p * log x + (q - 1) * log cx - beta)
      | otherwise                         = prod / exp beta
      where
        prod =  x**p * cx**(q - 1)
    -- Soper's expansion of incomplete beta function
    loop !psq (ns :: Int) ai term betain
      | done      = betain' * factor / p
      | otherwise = loop psq' (ns - 1) (ai + 1) term' betain'
      where
        -- New values
        term'   = term * fact / (p + ai)
        betain' = betain + term'
        fact | ns >  0   = (q - ai) * x/cx
             | ns == 0   = (q - ai) * x
             | otherwise = psq * x
        -- Iterations are complete
        done = db <= eps && db <= eps*betain' where db = abs term'
        psq' = if ns < 0 then psq + 1 else psq



-- | Compute inverse of regularized incomplete beta function. Uses
-- initial approximation from AS109, AS64 and Halley method to solve
-- equation.
invIncompleteBeta :: Double     -- ^ /a/ > 0
                  -> Double     -- ^ /b/ > 0
                  -> Double     -- ^ /x/ ∈ [0,1]
                  -> Double
invIncompleteBeta p q a
  | p <= 0 || q <= 0 =
      modErr $ printf "invIncompleteBeta p <= 0 || q <= 0.  p=%g q=%g a=%g" p q a
  | a <  0 || a >  1 =
      modErr $ printf "invIncompleteBeta x must be in [0,1].  p=%g q=%g a=%g" p q a
  | a == 0 || a == 1 = a
  | otherwise        = invIncompleteBetaWorker (logBeta p q) p q  a


invIncompleteBetaWorker :: Double -> Double -> Double -> Double -> Double
invIncompleteBetaWorker beta a b p = loop (0::Int) (invIncBetaGuess beta a b p)
  where
    a1 = a - 1
    b1 = b - 1
    -- Solve equation using Halley method
    loop !i !x
      -- We cannot continue at this point so we simply return `x'
      | x == 0 || x == 1             = x
      -- When derivative becomes infinite we cannot continue
      -- iterations. It can only happen in vicinity of 0 or 1. It's
      -- hardly possible to get good answer in such circumstances but
      -- `x' is already reasonable.
      | isInfinite f'                = x
      -- Iterations limit reached. Most of the time solution will
      -- converge to answer because of discreteness of Double. But
      -- solution have good precision already.
      | i >= 10                      = x
      -- Solution converges
      | abs dx <= 16 * m_epsilon * x = x'
      | otherwise                    = loop (i+1) x'
      where
        -- Calculate Halley step.
        f   = incompleteBeta_ beta a b x - p
        f'  = exp $ a1 * log x + b1 * log1p (-x) - beta
        u   = f / f'
        -- We bound Halley correction to Newton-Raphson to (-1,1) range
        corr | d > 1     = 1
             | d < -1    = -1
             | isNaN d   = 0
             | otherwise = d
          where
            d = u * (a1 / x - b1 / (1 - x))
        dx  = u / (1 - 0.5 * corr)
        -- Next approximation. If Halley step leads us out of [0,1]
        -- range we revert to bisection.
        x'  | z < 0     = x / 2
            | z > 1     = (x + 1) / 2
            | otherwise = z
            where z = x - dx


-- Calculate initial guess for inverse incomplete beta function.
invIncBetaGuess :: Double -> Double -> Double -> Double -> Double
-- Calculate initial guess. for solving equation for inverse incomplete beta.
-- It's really hodgepodge of different approximations accumulated over years.
--
-- Equations are referred to by name of paper and number e.g. [AS64 2]
-- In AS64 papers equations are not numbered so they are referred to by
-- number of appearance starting from definition of incomplete beta.
invIncBetaGuess beta a b p
  -- If both a and b are less than 1 incomplete beta have inflection
  -- point.
  --
  -- > x = (1 - a) / (2 - a - b)
  --
  -- We approximate incomplete beta by neglecting one of factors under
  -- integral and then rescaling result of integration into [0,1]
  -- range.
  | a < 1 && b < 1 =
    let x_infl = (1 - a) / (2 - a - b)
        p_infl = incompleteBeta a b x_infl
        x | p < p_infl = let xg = (a * p     * exp beta) ** (1/a) in xg / (1+xg)
          | otherwise  = let xg = (b * (1-p) * exp beta) ** (1/b) in 1 - xg/(1+xg)
    in x
  -- If both a and b larger or equal that 1 but not too big we use
  -- same approximation as above but calculate it a bit differently
  | a+b <= 6 && a>1 && b>1 =
    let x_infl = (a - 1) / (a + b - 2)
        p_infl = incompleteBeta a b x_infl
        x | p < p_infl = exp ((log(p * a) + beta) / a)
          | otherwise  = 1 - exp((log((1-p) * b) + beta) / b)
    in x
  -- For small a and not too big b we use approximation from boost.
  | b < 5 && a <= 1 =
    let x | p**(1/a) < 0.5 = (p ** (a * exp beta)) ** (1/a)
          | otherwise      = 1 - (1 - p ** (b * exp beta))**(1/b)
    in x
  -- When a>>b and both are large approximation from [Temme1992],
  -- section 4 "the incomplete gamma function case" used. In this
  -- region it greatly improves over other approximation (AS109, AS64,
  -- "Numerical Recipes")
  --
  -- FIXME: It could be used when b>>a too but it require inverse of
  --        upper incomplete gamma to be precise enough. In current
  --        implementation it loses precision in horrible way (40
  --        order of magnitude off for sufficiently small p)
  | a+b > 5 &&  a/b > 4 =
    let -- Calculate initial approximation to eta using eq 4.1
        eta0 = invIncompleteGamma b (1-p) / a
        mu   = b / a            -- Eq. 4.3
        -- A lot of helpers for calculation of
        w    = sqrt(1 + mu)     -- Eq. 4.9
        w_2  = w * w
        w_3  = w_2 * w
        w_4  = w_2 * w_2
        w_5  = w_3 * w_2
        w_6  = w_3 * w_3
        w_7  = w_4 * w_3
        w_8  = w_4 * w_4
        w_9  = w_5 * w_4
        w_10 = w_5 * w_5
        d    = eta0 - mu
        d_2  = d * d
        d_3  = d_2 * d
        d_4  = d_2 * d_2
        w1   = w + 1
        w1_2 = w1 * w1
        w1_3 = w1 * w1_2
        w1_4 = w1_2 * w1_2
        -- Evaluation of eq 4.10
        e1 = (w + 2) * (w - 1) / (3 * w)
           + (w_3 + 9 * w_2 + 21 * w + 5) * d
             / (36 * w_2 * w1)
           - (w_4 - 13 * w_3 + 69 * w_2 + 167 * w + 46) * d_2
             / (1620 * w1_2 * w_3)
           - (7 * w_5 + 21 * w_4 + 70 * w_3 + 26 * w_2 - 93 * w - 31) * d_3
             / (6480 * w1_3 * w_4)
           - (75 * w_6 + 202 * w_5 + 188 * w_4 - 888 * w_3 - 1345 * w_2 + 118 * w + 138) * d_4
             / (272160 * w1_4 * w_5)
        e2 = (28 * w_4 + 131 * w_3 + 402 * w_2 + 581 * w + 208) * (w - 1)
             / (1620 * w1 * w_3)
           - (35 * w_6 - 154 * w_5 - 623 * w_4 - 1636 * w_3 - 3983 * w_2 - 3514 * w - 925) * d
             / (12960 * w1_2 * w_4)
           - ( 2132 * w_7 + 7915 * w_6 + 16821 * w_5 + 35066 * w_4 + 87490 * w_3
             + 141183 * w_2 + 95993 * w + 21640
             ) * d_2
             / (816480 * w_5 * w1_3)
           - ( 11053 * w_8 + 53308 * w_7 + 117010 * w_6 + 163924 * w_5 + 116188 * w_4
             - 258428 * w_3 - 677042 * w_2 - 481940 * w - 105497
             ) * d_3
             / (14696640 * w1_4 * w_6)
        e3 = -( (3592 * w_7 + 8375 * w_6 - 1323 * w_5 - 29198 * w_4 - 89578 * w_3
                - 154413 * w_2 - 116063 * w - 29632
                ) * (w - 1)
              )
              / (816480 * w_5 * w1_2)
           - ( 442043 * w_9 + 2054169 * w_8 + 3803094 * w_7 + 3470754 * w_6 + 2141568 * w_5
             - 2393568 * w_4 - 19904934 * w_3 - 34714674 * w_2 - 23128299 * w - 5253353
             ) * d
             / (146966400 * w_6 * w1_3)
           - ( 116932 * w_10 + 819281 * w_9 + 2378172 * w_8 + 4341330 * w_7 + 6806004 * w_6
             + 10622748 * w_5 + 18739500 * w_4 + 30651894 * w_3 + 30869976 * w_2
             + 15431867 * w + 2919016
             ) * d_2
             / (146966400 * w1_4 * w_7)
        eta = evaluatePolynomialL (1/a) [eta0, e1, e2, e3]
        -- Now we solve eq 4.2 to recover x using Newton iterations
        u       = eta - mu * log eta + (1 + mu) * log(1 + mu) - mu
        cross   = 1 / (1 + mu);
        lower   = if eta < mu then cross else 0
        upper   = if eta < mu then 1     else cross
        x_guess = (lower + upper) / 2
        func x  = ( u + log x + mu*log(1 - x)
                  , 1/x - mu/(1-x)
                  )
        Root x0 = newtonRaphson def{newtonTol=RelTol 1e-8} (lower, x_guess, upper) func
    in x0
  -- For large a and b approximation from AS109 (Carter
  -- approximation). It's reasonably good in this region
  | a > 1 && b > 1 =
      let r = (y*y - 3) / 6
          s = 1 / (2*a - 1)
          t = 1 / (2*b - 1)
          h = 2 / (s + t)
          w = y * sqrt(h + r) / h - (t - s) * (r + 5/6 - 2 / (3 * h))
      in a / (a + b * exp(2 * w))
  -- Otherwise we revert to approximation from AS64 derived from
  -- [AS64 2] when it's applicable.
  --
  -- It slightly reduces average number of iterations when `a' and
  -- `b' have different magnitudes.
  | chi2 > 0 && ratio > 1 = 1 - 2 / (ratio + 1)
  -- If all else fails we use approximation from "Numerical
  -- Recipes". It's very similar to approximations [AS64 4,5] but
  -- it never goes out of [0,1] interval.
  | otherwise = case () of
      _| p < t / w  -> (a * p * w) ** (1/a)
       | otherwise  -> 1 - (b * (1 - p) * w) ** (1/b)
       where
         lna = log $ a / (a+b)
         lnb = log $ b / (a+b)
         t   = exp( a * lna ) / a
         u   = exp( b * lnb ) / b
         w   = t + u
  where
    -- Formula [AS64 2]
    ratio = (4*a + 2*b - 2) / chi2
    -- Quantile of chi-squared distribution. Formula [AS64 3].
    chi2 = 2 * b * (1 - t + y * sqrt t) ** 3
      where
        t   = 1 / (9 * b)
    -- `y' is Hasting's approximation of p'th quantile of standard
    -- normal distribution.
    y   = r - ( 2.30753 + 0.27061 * r )
              / ( 1.0 + ( 0.99229 + 0.04481 * r ) * r )
      where
        r = sqrt $ - 2 * log p



----------------------------------------------------------------
-- Sinc function
----------------------------------------------------------------

-- | Compute sinc function @sin(x)\/x@
sinc :: Double -> Double
sinc x
  | ax < eps_0 = 1
  | ax < eps_2 = 1 - x2/6
  | ax < eps_4 = 1 - x2/6 + x2*x2/120
  | otherwise  = sin x / x
  where
    ax    = abs x
    x2    = x*x
    -- For explanation of choice see `doc/sinc.hs'
    eps_0 = 1.8250120749944284e-8 -- sqrt (6ε/4)
    eps_2 = 1.4284346431400855e-4 --   (30ε)**(1/4) / 2
    eps_4 = 4.043633626430947e-3  -- (1206ε)**(1/6) / 2


----------------------------------------------------------------
-- Logarithm
----------------------------------------------------------------

-- | Compute log(1+x)-x:
log1pmx :: Double -> Double
log1pmx x
  | x <  -1        = error "Domain error"
  | x == -1        = m_neg_inf
  | ax > 0.95      = log(1 + x) - x
  | ax < m_epsilon = -(x * x) /2
  | otherwise      = - x * x * sumPowerSeries (-x) (recip <$> enumSequenceFrom 2)
  where
   ax = abs x

-- | /O(log n)/ Compute the logarithm in base 2 of the given value.
log2 :: Int -> Int
log2 v0
    | v0 <= 0   = modErr $ "log2: nonpositive input, got " ++ show v0
    | otherwise = go 5 0 v0
  where
    go !i !r !v | i == -1        = r
                | v .&. b i /= 0 = let si = U.unsafeIndex sv i
                                   in go (i-1) (r .|. si) (v `shiftR` si)
                | otherwise      = go (i-1) r v
    b = U.unsafeIndex bv
    !bv = U.fromList [ 0x02, 0x0c, 0xf0, 0xff00
                     , fromIntegral (0xffff0000 :: Word)
                     , fromIntegral (0xffffffff00000000 :: Word)]
    !sv = U.fromList [1,2,4,8,16,32]


----------------------------------------------------------------
-- Factorial
----------------------------------------------------------------

-- | Compute the factorial function /n/!.  Returns +∞ if the input is
--   above 170 (above which the result cannot be represented by a
--   64-bit 'Double').
factorial :: Int -> Double
factorial n
  | n < 0     = error "Numeric.SpecFunctions.factorial: negative input"
  | n > 170   = m_pos_inf
  | otherwise = U.unsafeIndex factorialTable n

-- | Compute the natural logarithm of the factorial function.  Gives
--   16 decimal digits of precision.
logFactorial :: Integral a => a -> Double
logFactorial n
  | n <  0    = error "Numeric.SpecFunctions.logFactorial: negative input"
  -- For smaller inputs we just look up table
  | n <= 170  = log $ U.unsafeIndex factorialTable (fromIntegral n)
  -- Otherwise we use asymptotic Stirling's series. Number of terms
  -- necessary depends on the argument.
  | n < 1500  = stirling + rx * ((1/12) - (1/360)*rx*rx)
  | otherwise = stirling + (1/12)*rx
  where
    stirling = (x - 0.5) * log x - x + m_ln_sqrt_2_pi
    x        = fromIntegral n + 1
    rx       = 1 / x
{-# SPECIALIZE logFactorial :: Int -> Double #-}


-- | Calculate the error term of the Stirling approximation.  This is
-- only defined for non-negative values.
--
-- \[
-- \operatorname{stirlingError}(n) = \log(n!) - \log(\sqrt{2\pi n}\frac{n}{e}^n)
-- \]
stirlingError :: Double -> Double
stirlingError n
  | n <= 15.0   = case properFraction (n+n) of
                    (i,0) -> sfe `U.unsafeIndex` i
                    _     -> logGamma (n+1.0) - (n+0.5) * log n + n -
                             m_ln_sqrt_2_pi
  | n > 500     = evaluateOddPolynomialL (1/n) [s0,-s1]
  | n > 80      = evaluateOddPolynomialL (1/n) [s0,-s1,s2]
  | n > 35      = evaluateOddPolynomialL (1/n) [s0,-s1,s2,-s3]
  | otherwise   = evaluateOddPolynomialL (1/n) [s0,-s1,s2,-s3,s4]
  where
    s0 = 0.083333333333333333333        -- 1/12
    s1 = 0.00277777777777777777778      -- 1/360
    s2 = 0.00079365079365079365079365   -- 1/1260
    s3 = 0.000595238095238095238095238  -- 1/1680
    s4 = 0.0008417508417508417508417508 -- 1/1188
    sfe = U.fromList [ 0.0,
                0.1534264097200273452913848,   0.0810614667953272582196702,
                0.0548141210519176538961390,   0.0413406959554092940938221,
                0.03316287351993628748511048,  0.02767792568499833914878929,
                0.02374616365629749597132920,  0.02079067210376509311152277,
                0.01848845053267318523077934,  0.01664469118982119216319487,
                0.01513497322191737887351255,  0.01387612882307074799874573,
                0.01281046524292022692424986,  0.01189670994589177009505572,
                0.01110455975820691732662991,  0.010411265261972096497478567,
                0.009799416126158803298389475, 0.009255462182712732917728637,
                0.008768700134139385462952823, 0.008330563433362871256469318,
                0.007934114564314020547248100, 0.007573675487951840794972024,
                0.007244554301320383179543912, 0.006942840107209529865664152,
                0.006665247032707682442354394, 0.006408994188004207068439631,
                0.006171712263039457647532867, 0.005951370112758847735624416,
                0.005746216513010115682023589, 0.005554733551962801371038690 ]


----------------------------------------------------------------
-- Combinatorics
----------------------------------------------------------------

-- |
-- Quickly compute the natural logarithm of /n/ @`choose`@ /k/, with
-- no checking.
--
-- Less numerically stable:
--
-- > exp $ lg (n+1) - lg (k+1) - lg (n-k+1)
-- >   where lg = logGamma . fromIntegral
logChooseFast :: Double -> Double -> Double
logChooseFast n k = -log (n + 1) - logBeta (n - k + 1) (k + 1)

-- | Calculate binomial coefficient using exact formula
chooseExact :: Int -> Int -> Double
n `chooseExact` k
  = U.foldl' go 1 $ U.enumFromTo 1 k
  where
    go a i      = a * (nk + j) / j
        where j = fromIntegral i :: Double
    nk = fromIntegral (n - k)

-- | Compute logarithm of the binomial coefficient.
logChoose :: Int -> Int -> Double
n `logChoose` k
    | k  > n    = (-1) / 0
      -- For very large N exact algorithm overflows double so we
      -- switch to beta-function based one
    | k' < 50 && (n < 20000000) = log $ chooseExact n k'
    | otherwise                 = logChooseFast (fromIntegral n) (fromIntegral k)
  where
    k' = min k (n-k)

-- | Compute the binomial coefficient /n/ @\``choose`\`@ /k/. For
-- values of /k/ > 50, this uses an approximation for performance
-- reasons.  The approximation is accurate to 12 decimal places in the
-- worst case
--
-- Example:
--
-- > 7 `choose` 3 == 35
choose :: Int -> Int -> Double
n `choose` k
    | k  > n         = 0
    | k' < 50        = chooseExact n k'
    | approx < max64 = fromIntegral . round64 $ approx
    | otherwise      = approx
  where
    k'             = min k (n-k)
    approx         = exp $ logChooseFast (fromIntegral n) (fromIntegral k')
    max64          = fromIntegral (maxBound :: Int64)
    round64 x      = round x :: Int64

-- | Compute ψ(/x/), the first logarithmic derivative of the gamma
--   function.
--
-- \[
-- \psi(x) = \frac{d}{dx} \ln \left(\Gamma(x)\right) = \frac{\Gamma'(x)}{\Gamma(x)}
-- \]
--
-- Uses Algorithm AS 103 by Bernardo, based on Minka's C implementation.
digamma :: Double -> Double
digamma x
    | isNaN x || isInfinite x                  = m_NaN
    -- FIXME:
    --   This is ugly. We are testing here that number is in fact
    --   integer. It's somewhat tricky question to answer. When ε for
    --   given number becomes 1 or greater every number is represents
    --   an integer. We also must make sure that excess precision
    --   won't bite us.
    | x <= 0 && fromIntegral (truncate x :: Int64) == x = m_neg_inf
    -- Jeffery's reflection formula
    | x < 0     = digamma (1 - x) + pi / tan (negate pi * x)
    | x <= 1e-6 = - γ - 1/x + trigamma1 * x
    | x' < c    = r
    -- De Moivre's expansion
    | otherwise = let s = 1/x'
                  in  evaluateEvenPolynomialL s
                        [   r + log x' - 0.5 * s
                        , - 1/12
                        ,   1/120
                        , - 1/252
                        ,   1/240
                        , - 1/132
                        ,  391/32760
                        ]
  where
    γ  = m_eulerMascheroni
    c  = 12
    -- Reduce to digamma (x + n) where (x + n) >= c
    (r, x') = reduce 0 x
      where
        reduce !s y
          | y < c     = reduce (s - 1 / y) (y + 1)
          | otherwise = (s, y)



----------------------------------------------------------------
-- Constants
----------------------------------------------------------------

-- Coefficients for 18-point Gauss-Legendre integration. They are
-- used in implementation of incomplete gamma and beta functions.
coefW,coefY :: U.Vector Double
coefW = U.fromList [ 0.0055657196642445571, 0.012915947284065419, 0.020181515297735382
                   , 0.027298621498568734,  0.034213810770299537, 0.040875750923643261
                   , 0.047235083490265582,  0.053244713977759692, 0.058860144245324798
                   , 0.064039797355015485,  0.068745323835736408, 0.072941885005653087
                   , 0.076598410645870640,  0.079687828912071670, 0.082187266704339706
                   , 0.084078218979661945,  0.085346685739338721, 0.085983275670394821
                   ]
coefY = U.fromList [ 0.0021695375159141994, 0.011413521097787704, 0.027972308950302116
                   , 0.051727015600492421,  0.082502225484340941, 0.12007019910960293
                   , 0.16415283300752470,   0.21442376986779355,  0.27051082840644336
                   , 0.33199876341447887,   0.39843234186401943,  0.46931971407375483
                   , 0.54413605556657973,   0.62232745288031077,  0.70331500465597174
                   , 0.78649910768313447,   0.87126389619061517,  0.95698180152629142
                   ]
{-# NOINLINE coefW #-}
{-# NOINLINE coefY #-}

trigamma1 :: Double
trigamma1 = 1.6449340668482264365 -- pi**2 / 6

modErr :: String -> a
modErr msg = error $ "Numeric.SpecFunctions." ++ msg

factorialTable :: U.Vector Double
{-# NOINLINE factorialTable #-}
factorialTable = U.fromListN 171
  [ 1.0
  , 1.0
  , 2.0
  , 6.0
  , 24.0
  , 120.0
  , 720.0
  , 5040.0
  , 40320.0
  , 362880.0
  , 3628800.0
  , 3.99168e7
  , 4.790016e8
  , 6.2270208e9
  , 8.71782912e10
  , 1.307674368e12
  , 2.0922789888e13
  , 3.55687428096e14
  , 6.402373705728e15
  , 1.21645100408832e17
  , 2.43290200817664e18
  , 5.109094217170944e19
  , 1.1240007277776077e21
  , 2.5852016738884974e22
  , 6.204484017332394e23
  , 1.5511210043330984e25
  , 4.032914611266056e26
  , 1.0888869450418352e28
  , 3.0488834461171384e29
  , 8.841761993739702e30
  , 2.6525285981219103e32
  , 8.222838654177922e33
  , 2.631308369336935e35
  , 8.683317618811886e36
  , 2.9523279903960412e38
  , 1.0333147966386144e40
  , 3.719933267899012e41
  , 1.3763753091226343e43
  , 5.23022617466601e44
  , 2.0397882081197442e46
  , 8.159152832478977e47
  , 3.3452526613163803e49
  , 1.4050061177528798e51
  , 6.041526306337383e52
  , 2.6582715747884485e54
  , 1.1962222086548019e56
  , 5.5026221598120885e57
  , 2.5862324151116818e59
  , 1.2413915592536073e61
  , 6.082818640342675e62
  , 3.0414093201713376e64
  , 1.5511187532873822e66
  , 8.065817517094388e67
  , 4.2748832840600255e69
  , 2.308436973392414e71
  , 1.2696403353658275e73
  , 7.109985878048634e74
  , 4.0526919504877214e76
  , 2.3505613312828785e78
  , 1.386831185456898e80
  , 8.32098711274139e81
  , 5.075802138772247e83
  , 3.146997326038793e85
  , 1.9826083154044399e87
  , 1.2688693218588415e89
  , 8.24765059208247e90
  , 5.44344939077443e92
  , 3.647111091818868e94
  , 2.4800355424368305e96
  , 1.711224524281413e98
  , 1.197857166996989e100
  , 8.504785885678623e101
  , 6.1234458376886085e103
  , 4.470115461512684e105
  , 3.307885441519386e107
  , 2.4809140811395396e109
  , 1.88549470166605e111
  , 1.4518309202828586e113
  , 1.1324281178206297e115
  , 8.946182130782974e116
  , 7.15694570462638e118
  , 5.797126020747368e120
  , 4.753643337012841e122
  , 3.9455239697206583e124
  , 3.314240134565353e126
  , 2.81710411438055e128
  , 2.422709538367273e130
  , 2.1077572983795275e132
  , 1.8548264225739844e134
  , 1.650795516090846e136
  , 1.4857159644817613e138
  , 1.352001527678403e140
  , 1.2438414054641305e142
  , 1.1567725070816416e144
  , 1.087366156656743e146
  , 1.0329978488239058e148
  , 9.916779348709496e149
  , 9.619275968248211e151
  , 9.426890448883246e153
  , 9.332621544394413e155
  , 9.332621544394415e157
  , 9.425947759838358e159
  , 9.614466715035125e161
  , 9.902900716486179e163
  , 1.0299016745145626e166
  , 1.0813967582402908e168
  , 1.1462805637347082e170
  , 1.2265202031961378e172
  , 1.3246418194518288e174
  , 1.4438595832024934e176
  , 1.5882455415227428e178
  , 1.7629525510902446e180
  , 1.974506857221074e182
  , 2.2311927486598134e184
  , 2.543559733472187e186
  , 2.9250936934930154e188
  , 3.393108684451898e190
  , 3.9699371608087206e192
  , 4.68452584975429e194
  , 5.574585761207606e196
  , 6.689502913449126e198
  , 8.094298525273443e200
  , 9.875044200833601e202
  , 1.214630436702533e205
  , 1.5061417415111406e207
  , 1.8826771768889257e209
  , 2.372173242880047e211
  , 3.0126600184576594e213
  , 3.856204823625804e215
  , 4.974504222477286e217
  , 6.466855489220473e219
  , 8.471580690878819e221
  , 1.1182486511960041e224
  , 1.4872707060906857e226
  , 1.9929427461615188e228
  , 2.6904727073180504e230
  , 3.6590428819525483e232
  , 5.012888748274991e234
  , 6.917786472619488e236
  , 9.615723196941088e238
  , 1.3462012475717523e241
  , 1.898143759076171e243
  , 2.6953641378881624e245
  , 3.8543707171800725e247
  , 5.5502938327393044e249
  , 8.047926057471992e251
  , 1.1749972043909107e254
  , 1.7272458904546386e256
  , 2.5563239178728654e258
  , 3.808922637630569e260
  , 5.713383956445854e262
  , 8.62720977423324e264
  , 1.3113358856834524e267
  , 2.0063439050956823e269
  , 3.0897696138473508e271
  , 4.789142901463393e273
  , 7.471062926282894e275
  , 1.1729568794264143e278
  , 1.8532718694937346e280
  , 2.946702272495038e282
  , 4.714723635992061e284
  , 7.590705053947218e286
  , 1.2296942187394494e289
  , 2.0044015765453023e291
  , 3.287218585534296e293
  , 5.423910666131589e295
  , 9.003691705778436e297
  , 1.5036165148649988e300
  , 2.526075744973198e302
  , 4.269068009004705e304
  , 7.257415615307998e306
  ]


-- [NOTE: incompleteGamma.taylorP]
--
-- Incompltete gamma uses several algorithms for different parts of
-- parameter space. Most troublesome is P(a,x) Taylor series
-- [Temme1994,Eq.5.5] which requires to evaluate rather nasty
-- expression:
--
--       x^a             x^a
--  ------------- = -------------
--  exp(x)·Γ(a+1)   exp(x)·a·Γ(a)
--
--  Conditions:
--    | 0.5<x<1.1  = x < 4/3*a
--    | otherwise  = x < a
--
-- For small `a` computation could be performed directly. However for
-- largish values of `a` it's possible some of factor in the
-- expression overflow. Values below take into account ranges for
-- Taylor P approximation:
--
--  · a > 155    - x^a could overflow
--  · a > 1182.5 - exp(x) could overflow
--
-- Usual way to avoid overflow problem is to perform calculations in
-- the log domain. It however doesn't work very well in this case
-- since we encounter catastrophic cancellations and could easily lose
-- up to 6(!) digits for large `a`.
--
-- So we take another approach and use Stirling approximation with
-- correction (logGammaCorrection).
--
--              x^a               / x·e \^a         1
--  ≈ ------------------------- = | --- | · ----------------
--    exp(x)·sqrt(2πa)·(a/e)^a)   \  a  /   exp(x)·sqrt(2πa)
--
-- We're using this approach as soon as logGammaCorrection starts
-- working (a>10) because we don't have implementation for gamma
-- function and exp(logGamma z) results in errors for large a.
--
-- Once we get into region when exp(x) could overflow we rewrite
-- expression above once more:
--
--  / x·e            \^a     1
--  | --- · e^(-x/a) | · ---------
--  \  a             /   sqrt(2πa)
--
-- This approach doesn't work very well but it's still big improvement
-- over calculations in the log domain.