File: Sum.hs

package info (click to toggle)
haskell-math-functions 0.3.4.4-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,132 kB
  • sloc: haskell: 2,675; python: 121; makefile: 2
file content (420 lines) | stat: -rw-r--r-- 16,209 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
{-# LANGUAGE BangPatterns, DeriveDataTypeable, FlexibleContexts,
    MultiParamTypeClasses, TypeFamilies #-}
{-# OPTIONS_GHC -fno-warn-name-shadowing #-}
-- |
-- Module    : Numeric.Sum
-- Copyright : (c) 2014 Bryan O'Sullivan
-- License   : BSD3
--
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- Functions for summing floating point numbers more accurately than
-- the naive 'Prelude.sum' function and its counterparts in the
-- @vector@ package and elsewhere.
--
-- When used with floating point numbers, in the worst case, the
-- 'Prelude.sum' function accumulates numeric error at a rate
-- proportional to the number of values being summed. The algorithms
-- in this module implement different methods of /compensated
-- summation/, which reduce the accumulation of numeric error so that
-- it either grows much more slowly than the number of inputs
-- (e.g. logarithmically), or remains constant.
module Numeric.Sum (
    -- * Summation type class
      Summation(..)
    , sumVector
    -- ** Usage
    -- $usage

    -- * Kahan-Babuška-Neumaier summation
    , KBNSum(..)
    , kbn

    -- * Order-2 Kahan-Babuška summation
    , KB2Sum(..)
    , kb2

    -- * Less desirable approaches

    -- ** Kahan summation
    , KahanSum(..)
    , kahan

    -- ** Pairwise summation
    , pairwiseSum

    -- * References
    -- $references
    ) where

import Control.Arrow ((***))
import Control.DeepSeq (NFData(..))
import Data.Bits (shiftR)
import Data.Data (Typeable, Data)
import Data.Semigroup               (Semigroup(..)) -- Needed for GHC <8.4
import Data.Vector.Generic          (Vector(..))
import Data.Vector.Generic.Mutable (MVector(..))

import qualified Data.Foldable as F
import qualified Data.Vector as V
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Generic.Mutable as GM
import qualified Data.Vector.Unboxed as U

-- | A class for summation of floating point numbers.
class Summation s where
    -- | The identity for summation.
    zero :: s

    -- | Add a value to a sum.
    add  :: s -> Double -> s

    -- | Sum a collection of values.
    --
    -- Example:
    -- @foo = 'Numeric.Sum.sum' 'kbn' [1,2,3]@
    sum  :: (F.Foldable f) => (s -> Double) -> f Double -> Double
    sum  f = f . F.foldl' add zero
    {-# INLINE sum #-}

instance Summation Double where
    zero = 0
    add = (+)

-- | Kahan summation. This is the least accurate of the compensated
-- summation methods.  In practice, it only beats naive summation for
-- inputs with large magnitude.  Kahan summation can be /less/
-- accurate than naive summation for small-magnitude inputs.
--
-- This summation method is included for completeness. Its use is not
-- recommended.  In practice, 'KBNSum' is both 30% faster and more
-- accurate.
data KahanSum = KahanSum {-# UNPACK #-} !Double {-# UNPACK #-} !Double
              deriving (Eq, Show, Typeable, Data)

instance U.Unbox KahanSum
newtype instance U.MVector s KahanSum = MV_KahanSum (U.MVector s (Double, Double))
instance MVector U.MVector KahanSum where
  {-# INLINE GM.basicLength #-}
  {-# INLINE GM.basicUnsafeSlice #-}
  {-# INLINE basicOverlaps #-}
  {-# INLINE basicUnsafeNew #-}
  {-# INLINE basicInitialize #-}
  {-# INLINE basicUnsafeReplicate #-}
  {-# INLINE basicUnsafeRead #-}
  {-# INLINE basicUnsafeWrite #-}
  {-# INLINE basicClear #-}
  {-# INLINE basicSet #-}
  {-# INLINE GM.basicUnsafeCopy #-}
  {-# INLINE basicUnsafeMove #-}
  {-# INLINE basicUnsafeGrow #-}
  basicLength (MV_KahanSum mvec) = GM.basicLength mvec
  basicUnsafeSlice idx len (MV_KahanSum mvec) = MV_KahanSum (GM.basicUnsafeSlice idx len mvec)
  basicOverlaps (MV_KahanSum mvec) (MV_KahanSum mvec') = basicOverlaps mvec mvec'
  basicUnsafeNew len = MV_KahanSum <$> basicUnsafeNew len
  basicInitialize (MV_KahanSum mvec) = basicInitialize mvec
  basicUnsafeReplicate len val = MV_KahanSum <$> basicUnsafeReplicate len ((\ (KahanSum a b) -> (a, b)) val)
  basicUnsafeRead (MV_KahanSum mvec) idx = (\ (a, b) -> KahanSum a b) <$> basicUnsafeRead mvec idx
  basicUnsafeWrite (MV_KahanSum mvec) idx val = basicUnsafeWrite mvec idx ((\ (KahanSum a b) -> (a, b)) val)
  basicClear (MV_KahanSum mvec) = basicClear mvec
  basicSet (MV_KahanSum mvec) val = basicSet mvec ((\ (KahanSum a b) -> (a, b)) val)
  basicUnsafeCopy (MV_KahanSum mvec) (MV_KahanSum mvec') = GM.basicUnsafeCopy mvec mvec'
  basicUnsafeMove (MV_KahanSum mvec) (MV_KahanSum mvec') = basicUnsafeMove mvec mvec'
  basicUnsafeGrow (MV_KahanSum mvec) len = MV_KahanSum <$> basicUnsafeGrow mvec len

newtype instance U.Vector KahanSum = V_KahanSum (U.Vector (Double, Double))
instance Vector U.Vector KahanSum where
  {-# INLINE basicUnsafeFreeze #-}
  {-# INLINE basicUnsafeThaw #-}
  {-# INLINE G.basicLength #-}
  {-# INLINE G.basicUnsafeSlice #-}
  {-# INLINE basicUnsafeIndexM #-}
  {-# INLINE G.basicUnsafeCopy #-}
  {-# INLINE elemseq #-}
  basicUnsafeFreeze (MV_KahanSum mvec) = V_KahanSum <$> basicUnsafeFreeze mvec
  basicUnsafeThaw (V_KahanSum vec) = MV_KahanSum <$> basicUnsafeThaw vec
  basicLength (V_KahanSum vec) = G.basicLength vec
  basicUnsafeSlice idx len (V_KahanSum vec) = V_KahanSum (G.basicUnsafeSlice idx len vec)
  basicUnsafeIndexM (V_KahanSum vec) idx = (\ (a, b) -> KahanSum a b) <$> basicUnsafeIndexM vec idx
  basicUnsafeCopy (MV_KahanSum mvec) (V_KahanSum vec) = G.basicUnsafeCopy mvec vec
  elemseq (V_KahanSum vec) val = elemseq vec ((\ (KahanSum a b) -> (a, b)) val)


instance Summation KahanSum where
    zero = KahanSum 0 0
    add  = kahanAdd

instance NFData KahanSum where
    rnf !_ = ()

-- | @since 0.3.0.0
instance Monoid KahanSum where
  mempty = zero
  mappend = (<>)

-- | @since 0.3.0.0
instance Semigroup KahanSum where
  s <> KahanSum s' _ = add s s'

kahanAdd :: KahanSum -> Double -> KahanSum
kahanAdd (KahanSum sum c) x = KahanSum sum' c'
  where sum' = sum + y
        c'   = (sum' - sum) - y
        y    = x - c

-- | Return the result of a Kahan sum.
kahan :: KahanSum -> Double
kahan (KahanSum sum _) = sum

-- | Kahan-Babuška-Neumaier summation. This is a little more
-- computationally costly than plain Kahan summation, but is /always/
-- at least as accurate.
data KBNSum = KBNSum {-# UNPACK #-} !Double {-# UNPACK #-} !Double
            deriving (Eq, Show, Typeable, Data)

instance U.Unbox KBNSum
newtype instance U.MVector s KBNSum = MV_KBNSum (U.MVector s (Double, Double))
instance MVector U.MVector KBNSum where
  {-# INLINE GM.basicLength #-}
  {-# INLINE GM.basicUnsafeSlice #-}
  {-# INLINE basicOverlaps #-}
  {-# INLINE basicUnsafeNew #-}
  {-# INLINE basicInitialize #-}
  {-# INLINE basicUnsafeReplicate #-}
  {-# INLINE basicUnsafeRead #-}
  {-# INLINE basicUnsafeWrite #-}
  {-# INLINE basicClear #-}
  {-# INLINE basicSet #-}
  {-# INLINE GM.basicUnsafeCopy #-}
  {-# INLINE basicUnsafeMove #-}
  {-# INLINE basicUnsafeGrow #-}
  basicLength (MV_KBNSum mvec) = GM.basicLength mvec
  basicUnsafeSlice idx len (MV_KBNSum mvec) = MV_KBNSum (GM.basicUnsafeSlice idx len mvec)
  basicOverlaps (MV_KBNSum mvec) (MV_KBNSum mvec') = basicOverlaps mvec mvec'
  basicUnsafeNew len = MV_KBNSum <$> basicUnsafeNew len
  basicInitialize (MV_KBNSum mvec) = basicInitialize mvec
  basicUnsafeReplicate len val = MV_KBNSum <$> basicUnsafeReplicate len ((\ (KBNSum a b) -> (a, b)) val)
  basicUnsafeRead (MV_KBNSum mvec) idx = (\ (a, b) -> KBNSum a b) <$> basicUnsafeRead mvec idx
  basicUnsafeWrite (MV_KBNSum mvec) idx val = basicUnsafeWrite mvec idx ((\ (KBNSum a b) -> (a, b)) val)
  basicClear (MV_KBNSum mvec) = basicClear mvec
  basicSet (MV_KBNSum mvec) val = basicSet mvec ((\ (KBNSum a b) -> (a, b)) val)
  basicUnsafeCopy (MV_KBNSum mvec) (MV_KBNSum mvec') = GM.basicUnsafeCopy mvec mvec'
  basicUnsafeMove (MV_KBNSum mvec) (MV_KBNSum mvec') = basicUnsafeMove mvec mvec'
  basicUnsafeGrow (MV_KBNSum mvec) len = MV_KBNSum <$> basicUnsafeGrow mvec len

newtype instance U.Vector KBNSum = V_KBNSum (U.Vector (Double, Double))
instance Vector U.Vector KBNSum where
  {-# INLINE basicUnsafeFreeze #-}
  {-# INLINE basicUnsafeThaw #-}
  {-# INLINE G.basicLength #-}
  {-# INLINE G.basicUnsafeSlice #-}
  {-# INLINE basicUnsafeIndexM #-}
  {-# INLINE G.basicUnsafeCopy #-}
  {-# INLINE elemseq #-}
  basicUnsafeFreeze (MV_KBNSum mvec) = V_KBNSum <$> basicUnsafeFreeze mvec
  basicUnsafeThaw (V_KBNSum vec) = MV_KBNSum <$> basicUnsafeThaw vec
  basicLength (V_KBNSum vec) = G.basicLength vec
  basicUnsafeSlice idx len (V_KBNSum vec) = V_KBNSum (G.basicUnsafeSlice idx len vec)
  basicUnsafeIndexM (V_KBNSum vec) idx = (\ (a, b) -> KBNSum a b) <$> basicUnsafeIndexM vec idx
  basicUnsafeCopy (MV_KBNSum mvec) (V_KBNSum vec) = G.basicUnsafeCopy mvec vec
  elemseq (V_KBNSum vec) val = elemseq vec ((\ (KBNSum a b) -> (a, b)) val)


instance Summation KBNSum where
    zero = KBNSum 0 0
    add  = kbnAdd

instance NFData KBNSum where
    rnf !_ = ()

-- | @since 0.3.0.0
instance Monoid KBNSum where
  mempty = zero
  mappend = (<>)

-- | @since 0.3.0.0
instance Semigroup KBNSum where
  s <> KBNSum s' c' = add (add s s') c'
  

kbnAdd :: KBNSum -> Double -> KBNSum
kbnAdd (KBNSum sum c) x = KBNSum sum' c'
  where c' | abs sum >= abs x = c + ((sum - sum') + x)
           | otherwise        = c + ((x - sum') + sum)
        sum'                  = sum + x

-- | Return the result of a Kahan-Babuška-Neumaier sum.
kbn :: KBNSum -> Double
kbn (KBNSum sum c) = sum + c

-- | Second-order Kahan-Babuška summation.  This is more
-- computationally costly than Kahan-Babuška-Neumaier summation,
-- running at about a third the speed.  Its advantage is that it can
-- lose less precision (in admittedly obscure cases).
--
-- This method compensates for error in both the sum and the
-- first-order compensation term, hence the use of \"second order\" in
-- the name.
data KB2Sum = KB2Sum {-# UNPACK #-} !Double
                     {-# UNPACK #-} !Double
                     {-# UNPACK #-} !Double
            deriving (Eq, Show, Typeable, Data)

instance U.Unbox KB2Sum
newtype instance U.MVector s KB2Sum = MV_KB2Sum (U.MVector s (Double, Double, Double))
instance MVector U.MVector KB2Sum where
  {-# INLINE GM.basicLength #-}
  {-# INLINE GM.basicUnsafeSlice #-}
  {-# INLINE basicOverlaps #-}
  {-# INLINE basicUnsafeNew #-}
  {-# INLINE basicInitialize #-}
  {-# INLINE basicUnsafeReplicate #-}
  {-# INLINE basicUnsafeRead #-}
  {-# INLINE basicUnsafeWrite #-}
  {-# INLINE basicClear #-}
  {-# INLINE basicSet #-}
  {-# INLINE GM.basicUnsafeCopy #-}
  {-# INLINE basicUnsafeMove #-}
  {-# INLINE basicUnsafeGrow #-}
  basicLength (MV_KB2Sum mvec) = GM.basicLength mvec
  basicUnsafeSlice idx len (MV_KB2Sum mvec) = MV_KB2Sum (GM.basicUnsafeSlice idx len mvec)
  basicOverlaps (MV_KB2Sum mvec) (MV_KB2Sum mvec') = basicOverlaps mvec mvec'
  basicUnsafeNew len = MV_KB2Sum <$> basicUnsafeNew len
  basicInitialize (MV_KB2Sum mvec) = basicInitialize mvec
  basicUnsafeReplicate len val = MV_KB2Sum <$> basicUnsafeReplicate len ((\ (KB2Sum a b c) -> (a, b, c)) val)
  basicUnsafeRead (MV_KB2Sum mvec) idx = (\ (a, b, c) -> KB2Sum a b c) <$> basicUnsafeRead mvec idx
  basicUnsafeWrite (MV_KB2Sum mvec) idx val = basicUnsafeWrite mvec idx ((\ (KB2Sum a b c) -> (a, b, c)) val)
  basicClear (MV_KB2Sum mvec) = basicClear mvec
  basicSet (MV_KB2Sum mvec) val = basicSet mvec ((\ (KB2Sum a b c) -> (a, b, c)) val)
  basicUnsafeCopy (MV_KB2Sum mvec) (MV_KB2Sum mvec') = GM.basicUnsafeCopy mvec mvec'
  basicUnsafeMove (MV_KB2Sum mvec) (MV_KB2Sum mvec') = basicUnsafeMove mvec mvec'
  basicUnsafeGrow (MV_KB2Sum mvec) len = MV_KB2Sum <$> basicUnsafeGrow mvec len

newtype instance U.Vector KB2Sum = V_KB2Sum (U.Vector (Double, Double, Double))
instance Vector U.Vector KB2Sum where
  {-# INLINE basicUnsafeFreeze #-}
  {-# INLINE basicUnsafeThaw #-}
  {-# INLINE G.basicLength #-}
  {-# INLINE G.basicUnsafeSlice #-}
  {-# INLINE basicUnsafeIndexM #-}
  {-# INLINE G.basicUnsafeCopy #-}
  {-# INLINE elemseq #-}
  basicUnsafeFreeze (MV_KB2Sum mvec) = V_KB2Sum <$> basicUnsafeFreeze mvec
  basicUnsafeThaw (V_KB2Sum vec) = MV_KB2Sum <$> basicUnsafeThaw vec
  basicLength (V_KB2Sum vec) = G.basicLength vec
  basicUnsafeSlice idx len (V_KB2Sum vec) = V_KB2Sum (G.basicUnsafeSlice idx len vec)
  basicUnsafeIndexM (V_KB2Sum vec) idx = (\ (a, b, c) -> KB2Sum a b c) <$> basicUnsafeIndexM vec idx
  basicUnsafeCopy (MV_KB2Sum mvec) (V_KB2Sum vec) = G.basicUnsafeCopy mvec vec
  elemseq (V_KB2Sum vec) val = elemseq vec ((\ (KB2Sum a b c) -> (a, b, c)) val)

instance Summation KB2Sum where
    zero = KB2Sum 0 0 0
    add  = kb2Add

instance NFData KB2Sum where
    rnf !_ = ()

-- | @since 0.3.0.0
instance Monoid KB2Sum where
  mempty = zero
  mappend = (<>)

-- | @since 0.3.0.0
instance Semigroup KB2Sum where
  s <> KB2Sum s' c' cc' = add (add (add s s') c') cc'


kb2Add :: KB2Sum -> Double -> KB2Sum
kb2Add (KB2Sum sum c cc) x = KB2Sum sum' c' cc'
  where sum'                 = sum + x
        c'                   = c + k
        cc' | abs c >= abs k = cc + ((c - c') + k)
            | otherwise      = cc + ((k - c') + c)
        k | abs sum >= abs x = (sum - sum') + x
          | otherwise        = (x - sum') + sum

-- | Return the result of an order-2 Kahan-Babuška sum.
kb2 :: KB2Sum -> Double
kb2 (KB2Sum sum c cc) = sum + c + cc

-- | /O(n)/ Sum a vector of values.
sumVector :: (Vector v Double, Summation s) =>
             (s -> Double) -> v Double -> Double
sumVector f = f . G.foldl' add zero
{-# INLINE sumVector #-}

-- | /O(n)/ Sum a vector of values using pairwise summation.
--
-- This approach is perhaps 10% faster than 'KBNSum', but has poorer
-- bounds on its error growth.  Instead of having roughly constant
-- error regardless of the size of the input vector, in the worst case
-- its accumulated error grows with /O(log n)/.
pairwiseSum :: (Vector v Double) => v Double -> Double
pairwiseSum v
  | len <= 256 = G.sum v
  | otherwise  = uncurry (+) . (pairwiseSum *** pairwiseSum) .
                 G.splitAt (len `shiftR` 1) $ v
  where len = G.length v
{-# SPECIALIZE pairwiseSum :: V.Vector Double -> Double #-}
{-# SPECIALIZE pairwiseSum :: U.Vector Double -> Double #-}

-- $usage
--
-- Most of these summation algorithms are intended to be used via the
-- 'Summation' typeclass interface. Explicit type annotations should
-- not be necessary, as the use of a function such as 'kbn' or 'kb2'
-- to extract the final sum out of a 'Summation' instance gives the
-- compiler enough information to determine the precise type of
-- summation algorithm to use.
--
-- As an example, here is a (somewhat silly) function that manually
-- computes the sum of elements in a list.
--
-- @
-- sillySumList :: [Double] -> Double
-- sillySumList = loop 'zero'
--   where loop s []     = 'kbn' s
--         loop s (x:xs) = 'seq' s' loop s' xs
--           where s'    = 'add' s x
-- @
--
-- In most instances, you can simply use the much more general 'Numeric.Sum.sum'
-- function instead of writing a summation function by hand.
--
-- @
-- -- Avoid ambiguity around which sum function we are using.
-- import Prelude hiding (sum)
-- --
-- betterSumList :: [Double] -> Double
-- betterSumList xs = 'Numeric.Sum.sum' 'kbn' xs
-- @

-- Note well the use of 'seq' in the example above to force the
-- evaluation of intermediate values.  If you must write a summation
-- function by hand, and you forget to evaluate the intermediate
-- values, you are likely to incur a space leak.
--
-- Here is an example of how to compute a prefix sum in which the
-- intermediate values are as accurate as possible.
--
-- @
-- prefixSum :: [Double] -> [Double]
-- prefixSum xs = map 'kbn' . 'scanl' 'add' 'zero' $ xs
-- @

-- $references
--
-- * Kahan, W. (1965), Further remarks on reducing truncation
--   errors. /Communications of the ACM/ 8(1):40.
--
-- * Neumaier, A. (1974), Rundungsfehleranalyse einiger Verfahren zur
--   Summation endlicher Summen.
--   /Zeitschrift für Angewandte Mathematik und Mechanik/ 54:39–51.
--
-- * Klein, A. (2006), A Generalized
--   Kahan-Babuška-Summation-Algorithm. /Computing/ 76(3):279-293.
--
-- * Higham, N.J. (1993), The accuracy of floating point
--   summation. /SIAM Journal on Scientific Computing/ 14(4):783–799.