1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE ViewPatterns #-}
-- | Tests for Statistics.Math
module Tests.SpecFunctions (
tests
) where
import Control.Monad
import Data.List
import Data.Maybe
import qualified Data.Vector as V
import Data.Vector ((!))
import qualified Data.Vector.Unboxed as U
import Test.QuickCheck hiding (choose,within)
import Test.Tasty
import Test.Tasty.QuickCheck (testProperty)
import Test.Tasty.HUnit
import Tests.Helpers
import Tests.SpecFunctions.Tables
import Numeric.SpecFunctions
import Numeric.SpecFunctions.Internal (factorialTable)
import Numeric.MathFunctions.Comparison (within,ulpDistance)
import Numeric.MathFunctions.Constants (m_epsilon,m_tiny)
erfTol,erfcTol,erfcLargeTol :: Int
-- Pure haskell implementation is not very good
#if !defined(USE_SYSTEM_ERF) || defined(__GHCJS__)
erfTol = 4
erfcTol = 4
erfcLargeTol = 64
-- Macos's erf is slightly worse that GNU one
#elif defined(darwin_HOST_OS)
erfTol = 2
erfcTol = 2
erfcLargeTol = 2
-- Windows' one is not very good too
#elif defined(mingw32_HOST_OS)
erfTol = 2
erfcTol = 2
erfcLargeTol = 4
#else
erfTol = 1
erfcTol = 2
erfcLargeTol = 2
#endif
isGHCJS :: Bool
#if defined(__GHCJS__)
isGHCJS = True
#else
isGHCJS = False
#endif
isWindows :: Bool
#if defined(mingw32_HOST_OS)
isWindows = True
#else
isWindows = False
#endif
tests :: TestTree
tests = testGroup "Special functions"
[ testGroup "erf"
[ -- implementation from numerical recipes loses precision for
-- large arguments
testCase "erfc table" $
forTable "tests/tables/erfc.dat" $ \[x, exact] ->
checkTabularPure erfcTol (show x) exact (erfc x)
, testCase "erfc table [large]" $
forTable "tests/tables/erfc-large.dat" $ \[x, exact] ->
checkTabularPure erfcLargeTol (show x) exact (erfc x)
--
, testCase "erf table" $
forTable "tests/tables/erf.dat" $ \[x, exact] -> do
checkTabularPure erfTol (show x) exact (erf x)
, testProperty "id = erfc . invErfc" invErfcIsInverse
, testProperty "id = invErfc . erfc" invErfcIsInverse2
, testProperty "invErf = erf^-1" invErfIsInverse
]
--
, testGroup "log1p & Co"
[ testCase "expm1 table" $
forTable "tests/tables/expm1.dat" $ \[x, exact] ->
checkTabularPure 2 (show x) exact (expm1 x)
, testCase "log1p table" $
forTable "tests/tables/log1p.dat" $ \[x, exact] ->
checkTabularPure 1 (show x) exact (log1p x)
]
----------------
, testGroup "gamma function"
[ testCase "logGamma table [fractional points" $
forTable "tests/tables/loggamma.dat" $ \[x, exact] -> do
checkTabularPure 2 (show x) exact (logGamma x)
, testProperty "Gamma(x+1) = x*Gamma(x)" $ gammaReccurence
, testCase "logGamma is expected to be precise at 1e-15 level" $
forM_ [3..10000::Int] $ \n -> do
let exact = logFactorial (n-1)
val = logGamma (fromIntegral n)
checkTabular 8 (show n) exact val
]
----------------
, testGroup "incomplete gamma"
[ testCase "incompleteGamma table" $
forTable "tests/tables/igamma.dat" $ \[a,x,exact] -> do
let err | a < 10 = 16
| a <= 101 = case () of
_| isGHCJS -> 64
| isWindows -> 64
| otherwise -> 32
| a == 201 = 200
| otherwise = 32
checkTabularPure err (show (a,x)) exact (incompleteGamma a x)
, testProperty "incomplete gamma - increases" $
\(abs -> s) (abs -> x) (abs -> y) -> s > 0 ==> monotonicallyIncreases (incompleteGamma s) x y
, testProperty "0 <= gamma <= 1" incompleteGammaInRange
, testProperty "gamma(1,x) = 1 - exp(-x)" incompleteGammaAt1Check
, testProperty "invIncompleteGamma = gamma^-1" invIGammaIsInverse
]
----------------
, testGroup "beta function"
[ testCase "logBeta table" $
forTable "tests/tables/logbeta.dat" $ \[p,q,exact] ->
let errEst
-- For Stirling approx. errors are very good
| b > 10 = 2
-- Partial Stirling approx
| a > 10 = case () of
_| b >= 1 -> 4
| otherwise -> 2 * est
-- sum of logGamma
| otherwise = case () of
_| a <= 1 && b <= 1 -> 8
| a >= 1 && b >= 1 -> 8
| otherwise -> 2 * est
where
a = max p q
b = min p q
--
est = ceiling
$ abs (logGamma a) + abs (logGamma b) + abs (logGamma (a + b))
/ abs (logBeta a b)
in checkTabularPure errEst (show (p,q)) exact (logBeta p q)
, testCase "logBeta factorial" betaFactorial
, testProperty "beta(1,p) = 1/p" beta1p
-- , testProperty "beta recurrence" betaRecurrence
]
----------------
, testGroup "incomplete beta"
[ testCase "incompleteBeta table" $
forM_ tableIncompleteBeta $ \(p,q,x,exact) ->
checkTabular 64 (show (x,p,q)) (incompleteBeta p q x) exact
, testCase "incompleteBeta table with p > 3000 and q > 3000" $
forM_ tableIncompleteBetaP3000 $ \(x,p,q,exact) ->
checkTabular 7000 (show (x,p,q)) (incompleteBeta p q x) exact
--
, testProperty "0 <= I[B] <= 1" incompleteBetaInRange
, testProperty "ibeta symmetry" incompleteBetaSymmetry
, testCase "Regression #68" $ do
let a = 1
b = 0.3
p = 0.3
x = invIncompleteBeta a b p
assertBool "Inversion OK" $ incompleteBeta a b x `ulpDistance` p < 4
-- XXX FIXME DISABLED due to failures
-- , testProperty "invIncompleteBeta = B^-1" $ invIBetaIsInverse
]
----------------
, testGroup "digamma"
[ testAssertion "digamma is expected to be precise at 1e-14 [integers]"
$ digammaTestIntegers 1e-14
-- Relative precision is lost when digamma(x) ≈ 0
, testCase "digamma is expected to be precise at 1e-12" $
forTable "tests/tables/digamma.dat" $ \[x, exact] ->
checkTabularPure 2048
(show x) (digamma x) exact
]
----------------
, testGroup "factorial"
[ testCase "Factorial table" $
forM_ [0 .. 170] $ \n -> do
checkTabular 1
(show n)
(fromIntegral (factorial' n))
(factorial (fromIntegral n :: Int))
--
, testCase "Log factorial from integer" $
forM_ [2 .. 170] $ \n -> do
checkTabular 1
(show n)
(log $ fromIntegral $ factorial' n)
(logFactorial (fromIntegral n :: Int))
, testAssertion "Factorial table is OK"
$ U.length factorialTable == 171
, testCase "Log factorial table" $
forTable "tests/tables/factorial.dat" $ \[i,exact] ->
checkTabularPure 3
(show i) (logFactorial (round i :: Int)) exact
]
----------------
, testGroup "combinatorics"
[ testCase "choose table" $
forM_ [0 .. 1000] $ \n ->
forM_ [0 .. n] $ \k -> do
checkTabular (if isWindows then 3072 else 2048)
(show (n,k))
(fromIntegral $ choose' n k)
(choose (fromInteger n) (fromInteger k))
--
, testCase "logChoose == log . choose" $
forM_ [0 .. 1000] $ \n ->
forM_ [0 .. n] $ \k -> do
checkTabular 2
(show (n,k))
(log $ choose n k)
(logChoose n k)
]
----------------------------------------------------------------
-- Self tests
, testGroup "self-test"
[ testProperty "Self-test: 0 <= range01 <= 1" $ \x -> let f = range01 x in f <= 1 && f >= 0
]
]
----------------------------------------------------------------
-- efr tests
----------------------------------------------------------------
roundtrip_erfc_invErfc,
roundtrip_invErfc_erfc,
roundtrip_erf_invErf
:: (Double,Double)
#if !defined(USE_SYSTEM_ERF) || defined(__GHCJS__)
roundtrip_erfc_invErfc = (2,8)
roundtrip_invErfc_erfc = (8,4)
roundtrip_erf_invErf = (128,128)
#elif defined(darwin_HOST_OS)
roundtrip_erfc_invErfc = (4,4)
roundtrip_invErfc_erfc = (4,4)
roundtrip_erf_invErf = (2,2)
#elif defined(mingw32_HOST_OS)
roundtrip_erfc_invErfc = (4,4)
roundtrip_invErfc_erfc = (4,4)
roundtrip_erf_invErf = (4,4)
#else
roundtrip_erfc_invErfc = (2,2)
roundtrip_invErfc_erfc = (2,2)
roundtrip_erf_invErf = (1,1)
#endif
-- id ≈ erfc . invErfc
invErfcIsInverse :: Double -> Property
invErfcIsInverse ((*2) . range01 -> x)
= (not $ isInfinite x) ==>
( counterexample ("x = " ++ show x )
$ counterexample ("y = " ++ show y )
$ counterexample ("x' = " ++ show x')
$ counterexample ("calc.err = " ++ show (delta, delta-e'))
$ counterexample ("ulps = " ++ show (ulpDistance x x'))
$ ulpDistance x x' <= round delta
)
where
(e,e') = roundtrip_erfc_invErfc
delta = e' + e * abs ( y / x * 2 / sqrt pi * exp( -y*y ))
y = invErfc x
x' = erfc y
-- id ≈ invErfc . erfc
invErfcIsInverse2 :: Double -> Property
invErfcIsInverse2 x
= (not $ isInfinite x') ==>
(y > m_tiny) ==>
(x /= 0) ==>
counterexample ("x = " ++ show x )
$ counterexample ("y = " ++ show y )
$ counterexample ("x' = " ++ show x')
$ counterexample ("calc.err = " ++ show delta)
$ counterexample ("ulps = " ++ show (ulpDistance x x'))
$ ulpDistance x x' <= delta
where
(e,e') = roundtrip_invErfc_erfc
delta = round
$ e' + e * abs (y / x / (2 / sqrt pi * exp( -x*x )))
y = erfc x
x' = invErfc y
-- id ≈ erf . invErf
invErfIsInverse :: Double -> Property
invErfIsInverse a
= (x /= 0) ==>
counterexample ("x = " ++ show x )
$ counterexample ("y = " ++ show y )
$ counterexample ("x' = " ++ show x')
$ counterexample ("calc.err = " ++ show delta)
$ counterexample ("ulps = " ++ show (ulpDistance x x'))
$ ulpDistance x x' <= delta
where
(e,e') = roundtrip_erf_invErf
delta = round
$ e + e' * abs (y / x * 2 / sqrt pi * exp ( -y * y ))
x | a < 0 = - range01 a
| otherwise = range01 a
y = invErf x
x' = erf y
----------------------------------------------------------------
-- QC tests
----------------------------------------------------------------
-- B(p,q) = (x - 1)!(y-1)! / (x + y - 1)!
betaFactorial :: IO ()
betaFactorial = do
forM_ prod $ \(p,q,facP,facQ,facProd) -> do
let exact = fromIntegral (facQ * facP)
/ fromIntegral facProd
checkTabular 16 (show (p,q))
(logBeta (fromIntegral p) (fromIntegral q))
(log exact)
where
prod = [ (p,q,facP,facQ, factorial' (p + q - 1))
| (p,facP) <- facList
, (q,facQ) <- facList
, p + q < 170
, not (p == 1 && q== 1)
]
facList = [(p,factorial' (p-1)) | p <- [1 .. 170]]
-- B(1,p) = 1/p
beta1p :: Double -> Property
beta1p (abs -> p)
= p > 2 ==>
counterexample ("p = " ++ show p)
$ counterexample ("logB = " ++ show lb)
$ counterexample ("err = " ++ show d)
$ d <= 24
where
lb = logBeta 1 p
d = ulpDistance lb (- log p)
{-
-- B(p+1,q) = B(p,q) · p/(p+q)
betaRecurrence :: Double -> Double -> Property
betaRecurrence (abs -> p) (abs -> q)
= p > 0 && q > 0 ==>
counterexample ("p = " ++ show p)
$ counterexample ("q = " ++ show q)
$ counterexample ("log B(p,q) = " ++ show (logBeta p q))
$ counterexample ("log B(p+1,q) = " ++ show (logBeta (p+1) q))
$ counterexample ("err = " ++ show d)
$ d <= 128
where
logB = logBeta p q + log (p / (p + q))
logB' = logBeta (p + 1) q
d = ulpDistance logB logB'
-}
-- Γ(x+1) = x·Γ(x)
gammaReccurence :: Double -> Property
gammaReccurence x
= x > 0 ==> err < errEst
where
g1 = logGamma x
g2 = logGamma (x+1)
err = abs (g2 - g1 - log x)
-- logGamma apparently is not as precise for small x. See #59 for details
errEst = max 1e-14
$ 2 * m_epsilon * sum (map abs [ g1 , g2 , log x ])
-- γ(s,x) is in [0,1] range
incompleteGammaInRange :: Double -> Double -> Property
incompleteGammaInRange (abs -> s) (abs -> x) =
x >= 0 && s > 0 ==> let i = incompleteGamma s x in i >= 0 && i <= 1
-- γ(1,x) = 1 - exp(-x)
-- Since Γ(1) = 1 normalization doesn't make any difference
incompleteGammaAt1Check :: Double -> Bool
incompleteGammaAt1Check (abs -> x) =
ulpDistance (incompleteGamma 1 x) (-expm1(-x)) < 16
-- invIncompleteGamma is inverse of incompleteGamma
invIGammaIsInverse :: Double -> Double -> Property
invIGammaIsInverse (abs -> a) (range01 -> p) =
a > m_tiny && p > m_tiny && p < 1 && x > m_tiny ==>
( counterexample ("a = " ++ show a )
$ counterexample ("p = " ++ show p )
$ counterexample ("x = " ++ show x )
$ counterexample ("p' = " ++ show p')
$ counterexample ("err = " ++ show (ulpDistance p p'))
$ counterexample ("est = " ++ show est)
$ ulpDistance p p' <= est
)
where
x = invIncompleteGamma a p
f' = exp ( log x * (a-1) - x - logGamma a)
p' = incompleteGamma a x
-- FIXME: Test should be rechecked when #42 is fixed
(e,e') = (32,32)
est = round
$ e' + e * abs (x / p * f')
-- I(x;p,q) is in [0,1] range
incompleteBetaInRange :: Double -> Double -> Double -> Property
incompleteBetaInRange (abs -> p) (abs -> q) (range01 -> x) =
p > 0 && q > 0 ==> let i = incompleteBeta p q x in i >= 0 && i <= 1
-- I(0.5; p,p) = 0.5
incompleteBetaSymmetry :: Double -> Property
incompleteBetaSymmetry (abs -> p) =
p > 0 ==>
counterexample ("p = " ++ show p)
$ counterexample ("ib = " ++ show ib)
$ counterexample ("err = " ++ show d)
$ counterexample ("est = " ++ show est)
$ d <= est
where
est | p < 1 = 80
| p < 10 = 200
| otherwise = round $ 6 * p
d = ulpDistance ib 0.5
ib = incompleteBeta p p 0.5
-- invIncompleteBeta is inverse of incompleteBeta
invIBetaIsInverse :: Double -> Double -> Double -> Property
invIBetaIsInverse (abs -> p) (abs -> q) (range01 -> x) =
p > 0 && q > 0 ==> ( counterexample ("p = " ++ show p )
$ counterexample ("q = " ++ show q )
$ counterexample ("x = " ++ show x )
$ counterexample ("x' = " ++ show x')
$ counterexample ("a = " ++ show a)
$ counterexample ("err = " ++ (show $ abs $ (x - x') / x))
$ abs (x - x') <= 1e-12
)
where
x' = incompleteBeta p q a
a = invIncompleteBeta p q x
-- Table for digamma function:
--
-- Uses equality ψ(n) = H_{n-1} - γ where
-- H_{n} = Σ 1/k, k = [1 .. n] - harmonic number
-- γ = 0.57721566490153286060 - Euler-Mascheroni number
digammaTestIntegers :: Double -> Bool
digammaTestIntegers eps
= all (uncurry $ eq eps) $ take 3000 digammaInt
where
ok approx exact = approx
-- Harmonic numbers starting from 0
harmN = scanl (\a n -> a + 1/n) 0 [1::Rational .. ]
gam = 0.57721566490153286060
-- Digamma values
digammaInt = zipWith (\i h -> (digamma i, realToFrac h - gam)) [1..] harmN
----------------------------------------------------------------
-- Unit tests
----------------------------------------------------------------
-- Lookup table for fact factorial calculation. It has fixed size
-- which is bad but it's OK for this particular case
factorial_table :: V.Vector Integer
factorial_table = V.generate 2000 (\n -> product [1..fromIntegral n])
-- Exact implementation of factorial
factorial' :: Integer -> Integer
factorial' n = factorial_table ! fromIntegral n
-- Exact albeit slow implementation of choose
choose' :: Integer -> Integer -> Integer
choose' n k = factorial' n `div` (factorial' k * factorial' (n-k))
-- Truncate double to [0,1]
range01 :: Double -> Double
range01 = abs . (snd :: (Integer, Double) -> Double) . properFraction
readTable :: FilePath -> IO [[Double]]
readTable
= fmap (fmap (fmap read . words) . lines)
. readFile
forTable :: FilePath -> ([Double] -> Maybe String) -> IO ()
forTable path fun = do
rows <- readTable path
case mapMaybe fun rows of
[] -> return ()
errs -> assertFailure $ intercalate "---\n" errs
checkTabular :: Int -> String -> Double -> Double -> IO ()
checkTabular prec x exact val =
case checkTabularPure prec x exact val of
Nothing -> return ()
Just s -> assertFailure s
checkTabularPure :: Int -> String -> Double -> Double -> Maybe String
checkTabularPure prec x exact val
| within prec exact val = Nothing
| otherwise = Just $ unlines
[ " x = " ++ x
, " expected = " ++ show exact
, " got = " ++ show val
, " ulps diff = " ++ show (ulpDistance exact val)
, " err.est. = " ++ show prec
]
|