File: Tests.hs

package info (click to toggle)
haskell-memory 0.18.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 324 kB
  • sloc: haskell: 3,362; makefile: 7
file content (292 lines) | stat: -rw-r--r-- 11,632 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
{-# LANGUAGE CPP #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE OverloadedStrings #-}
module Main where

import           Imports
import           Foundation.Check.Main
import           Utils
import           Data.Char                    (chr)
import           Data.Word
import qualified Data.ByteString         as BS
import           Data.ByteArray               (Bytes, ScrubbedBytes, ByteArray)
import qualified Data.ByteArray          as B
import qualified Data.ByteArray.Encoding as B
import qualified Data.ByteArray.Parse    as Parse

import qualified SipHash

#ifdef WITH_BASEMENT_SUPPORT
import           Basement.Block (Block)
import           Basement.UArray (UArray)
#endif

newtype Positive = Positive Word
  deriving (Show, Eq, Ord)
instance Arbitrary Positive where
    arbitrary = Positive <$> between (0, 255)

data Backend = BackendByte | BackendScrubbedBytes
#ifdef WITH_BASEMENT_SUPPORT
#if MIN_VERSION_basement(0,0,5)
    | BackendBlock
#endif
    | BackendUArray
#endif
    deriving (Show,Eq,Bounded,Enum)

allBackends :: NonEmpty [Backend]
allBackends = nonEmpty_ $ enumFrom BackendByte

data ArbitraryBS = forall a . ByteArray a => ArbitraryBS a

arbitraryBS :: Word -> Gen ArbitraryBS
arbitraryBS n = do
    backend <- elements allBackends
    case backend of
        BackendByte          -> ArbitraryBS `fmap` ((B.pack `fmap` replicateM (fromIntegral n) arbitrary) :: Gen Bytes)
        BackendScrubbedBytes -> ArbitraryBS `fmap` ((B.pack `fmap` replicateM (fromIntegral n) arbitrary) :: Gen ScrubbedBytes)
#ifdef WITH_BASEMENT_SUPPORT
#if MIN_VERSION_basement(0,0,5)
        BackendBlock         -> ArbitraryBS `fmap` ((B.pack `fmap` replicateM (fromIntegral n) arbitrary) :: Gen (Block Word8))
#endif
        BackendUArray        -> ArbitraryBS `fmap` ((B.pack `fmap` replicateM (fromIntegral n) arbitrary) :: Gen (UArray Word8))
#endif

arbitraryBSof :: Word -> Word -> Gen ArbitraryBS
arbitraryBSof minBytes maxBytes = between (minBytes, maxBytes) >>= arbitraryBS

newtype SmallList a = SmallList [a]
    deriving (Show,Eq)

instance Arbitrary a => Arbitrary (SmallList a) where
    arbitrary = between (0,8) >>= \n -> SmallList `fmap` replicateM (fromIntegral n) arbitrary

instance Arbitrary ArbitraryBS where
    arbitrary = arbitraryBSof 0 259

newtype Words8 = Words8 { unWords8 :: [Word8] }
    deriving (Show,Eq)

instance Arbitrary Words8 where
    arbitrary = between (0, 259) >>= \n -> Words8 <$> replicateM (fromIntegral n) arbitrary

testGroupBackends :: String -> (forall ba . (Show ba, Eq ba, Typeable ba, ByteArray ba) => (ba -> ba) -> [Test]) -> Test
testGroupBackends x l =
    Group x
        [ Group "Bytes" (l withBytesWitness)
        , Group "ScrubbedBytes" (l withScrubbedBytesWitness)
#ifdef WITH_BASEMENT_SUPPORT
        , Group "Block" (l withBlockWitness)
        , Group "UArray" (l withUArrayWitness)
#endif
        ]

testShowProperty :: IsProperty a
                 => String
                 -> (forall ba . (Show ba, Eq ba, Typeable ba, ByteArray ba) => (ba -> ba) -> ([Word8] -> String) -> a)
                 -> Test
testShowProperty x p =
    Group x
        [ Property "Bytes" (p withBytesWitness showLikeString)
        , Property "ScrubbedBytes" (p withScrubbedBytesWitness showLikeEmptySB)
        ]
  where
    showLikeString  l = show $ (chr . fromIntegral) <$> l
    showLikeEmptySB _ = show (withScrubbedBytesWitness B.empty)

base64Kats =
    [ ("pleasure.", "cGxlYXN1cmUu")
    , ("leasure.", "bGVhc3VyZS4=")
    , ("easure.", "ZWFzdXJlLg==")
    , ("asure.", "YXN1cmUu")
    , ("sure.", "c3VyZS4=")
    , ("", "")
    ]

base64URLKats =
    [ ("pleasure.", "cGxlYXN1cmUu")
    , ("leasure.", "bGVhc3VyZS4")
    , ("easure.", "ZWFzdXJlLg")
    , ("asure.", "YXN1cmUu")
    , ("sure.", "c3VyZS4")
    , ("\DC4\251\156\ETX\217~", "FPucA9l-") -- From RFC4648
    , ("\DC4\251\156\ETX\217\DEL", "FPucA9l_")
    , ("", "")
    ]

base16Kats =
    [ ("this is a string", "74686973206973206120737472696e67") ]

base32Kats =
    [ ("-pleasure.", "FVYGYZLBON2XEZJO")
    , ("pleasure.",  "OBWGKYLTOVZGKLQ=")
    , ("leasure.",   "NRSWC43VOJSS4===")
    , ("easure.",    "MVQXG5LSMUXA====")
    , ("asure.",     "MFZXK4TFFY======")
    , ("sure.",      "ON2XEZJO")
    , ("ure.",       "OVZGKLQ=")
    , ("re.",        "OJSS4===")
    , ("e.",         "MUXA====")
    , (".",          "FY======")
    , ("",           "")
    ]

encodingTests witnessID =
    [ Group "BASE64"
        [ Group "encode-KAT" encodeKats64
        , Group "decode-KAT" decodeKats64
        ]
    , Group "BASE64URL"
        [ Group "encode-KAT" encodeKats64URLUnpadded
        , Group "decode-KAT" decodeKats64URLUnpadded
        ]
    , Group "BASE32"
        [ Group "encode-KAT" encodeKats32
        , Group "decode-KAT" decodeKats32
        ]
    , Group "BASE16"
        [ Group "encode-KAT" encodeKats16
        , Group "decode-KAT" decodeKats16
        ]
    ]
  where
        encodeKats64 = fmap (toTest B.Base64) $ zip [1..] base64Kats
        decodeKats64 = fmap (toBackTest B.Base64) $ zip [1..] base64Kats
        encodeKats32 = fmap (toTest B.Base32) $ zip [1..] base32Kats
        decodeKats32 = fmap (toBackTest B.Base32) $ zip [1..] base32Kats
        encodeKats16 = fmap (toTest B.Base16) $ zip [1..] base16Kats
        decodeKats16 = fmap (toBackTest B.Base16) $ zip [1..] base16Kats
        encodeKats64URLUnpadded = fmap (toTest B.Base64URLUnpadded) $ zip [1..] base64URLKats
        decodeKats64URLUnpadded = fmap (toBackTest B.Base64URLUnpadded) $ zip [1..] base64URLKats

        toTest :: B.Base -> (Int, (LString, LString)) -> Test
        toTest base (i, (inp, out)) = Property (show i) $
            let inpbs = witnessID $ B.convertToBase base $ witnessID $ B.pack $ unS inp
                outbs = witnessID $ B.pack $ unS out
             in outbs === inpbs
        toBackTest :: B.Base -> (Int, (LString, LString)) -> Test
        toBackTest base (i, (inp, out)) = Property (show i) $
            let inpbs = witnessID $ B.pack $ unS inp
                outbs = B.convertFromBase base $ witnessID $ B.pack $ unS out
             in Right inpbs === outbs

-- check not to touch internal null pointer of the empty ByteString
bsNullEncodingTest =
    Group "BS-null"
      [ Group "BASE64"
        [ Property "encode-KAT" $ toTest B.Base64
        , Property "decode-KAT" $ toBackTest B.Base64
        ]
      , Group "BASE32"
        [ Property "encode-KAT" $ toTest B.Base32
        , Property "decode-KAT" $ toBackTest B.Base32
        ]
      , Group "BASE16"
        [ Property "encode-KAT" $ toTest B.Base16
        , Property "decode-KAT" $ toBackTest B.Base16
        ]
      ]
  where
    toTest base =
      B.convertToBase base BS.empty === BS.empty
    toBackTest base =
      B.convertFromBase base BS.empty === Right BS.empty

parsingTests witnessID =
    [ CheckPlan "parse" $
        let input = witnessID $ B.pack $ unS "xx abctest"
            abc   = witnessID $ B.pack $ unS "abc"
            est   = witnessID $ B.pack $ unS "est"
            result = Parse.parse ((,,) <$> Parse.take 2 <*> Parse.byte 0x20 <*> (Parse.bytes abc *> Parse.anyByte)) input
         in case result of
                Parse.ParseOK remaining (_,_,_) -> validate "remaining" $ est === remaining
                _                               -> validate "unexpected result" False
    ]

main = defaultMain $ Group "memory"
    [ testGroupBackends "basic" basicProperties
    , bsNullEncodingTest
    , testGroupBackends "encoding" encodingTests
    , testGroupBackends "parsing" parsingTests
    , testGroupBackends "hashing" $ \witnessID ->
        [ Group "SipHash" $ SipHash.tests witnessID
        ]
    , testShowProperty "showing" $ \witnessID expectedShow (Words8 l) ->
          (show . witnessID . B.pack $ l) == expectedShow l
#ifdef WITH_BASEMENT_SUPPORT
    , testFoundationTypes
#endif
    ]
  where
    basicProperties witnessID =
        [ Property "unpack . pack == id" $ \(Words8 l) -> l == (B.unpack . witnessID . B.pack $ l)
        , Property "self-eq" $ \(Words8 l) -> let b = witnessID . B.pack $ l in b == b
        , Property "add-empty-eq" $ \(Words8 l) ->
            let b = witnessID $ B.pack l
             in B.append b B.empty == b
        , Property "zero" $ \(Positive n) ->
            let expected = witnessID $ B.pack $ replicate (fromIntegral n) 0
             in expected == B.zero (fromIntegral n)
        , Property "Ord" $ \(Words8 l1) (Words8 l2) ->
            compare l1 l2 == compare (witnessID $ B.pack l1) (B.pack l2)
        , Property "Monoid(mappend)" $ \(Words8 l1) (Words8 l2) ->
            mappend l1 l2 == (B.unpack $ mappend (witnessID $ B.pack l1) (B.pack l2))
        , Property "Monoid(mconcat)" $ \(SmallList l) ->
            mconcat (fmap unWords8 l) == (B.unpack $ mconcat $ fmap (witnessID . B.pack . unWords8) l)
        , Property "append (append a b) c == append a (append b c)" $ \(Words8 la) (Words8 lb) (Words8 lc) ->
            let a = witnessID $ B.pack la
                b = witnessID $ B.pack lb
                c = witnessID $ B.pack lc
             in B.append (B.append a b) c == B.append a (B.append b c)
        , Property "concat l" $ \(SmallList l) ->
            let chunks   = fmap (witnessID . B.pack . unWords8) l
                expected = concatMap unWords8 l
             in B.pack expected == witnessID (B.concat chunks)
        , Property "reverse" $ \(Words8 l) ->
            let b = witnessID (B.pack l)
             in reverse l == B.unpack (B.reverse b)
        , Property "cons b (reverse bs) == reverse (snoc bs b)" $ \(Words8 l) b ->
            let a = witnessID (B.pack l)
             in B.cons b (B.reverse a) == B.reverse (B.snoc a b)
        , Property "all == Prelude.all" $ \(Words8 l) b ->
            let b1 = witnessID (B.pack l)
                p  = (/= b)
             in B.all p b1 == all p l
        , Property "any == Prelude.any" $ \(Words8 l) b ->
            let b1 = witnessID (B.pack l)
                p  = (== b)
             in B.any p b1 == any p l
        , Property "singleton b == pack [b]" $ \b ->
            witnessID (B.singleton b) == B.pack [b]
        , Property "span" $ \x (Words8 l) ->
            let c = witnessID (B.pack l)
                (a, b) = B.span (== x) c
             in c == B.append a b
        , Property "span (const True)" $ \(Words8 l) ->
            let a = witnessID (B.pack l)
             in B.span (const True) a == (a, B.empty)
        , Property "span (const False)" $ \(Words8 l) ->
            let b = witnessID (B.pack l)
             in B.span (const False) b == (B.empty, b)
        ]

#ifdef WITH_BASEMENT_SUPPORT
testFoundationTypes = Group "Basement"
  [ CheckPlan "allocRet 4 _ :: UArray Int8 === 4" $ do
      x <- pick "allocateRet 4 _" $ (B.length :: UArray Int8 -> Int) . snd <$> B.allocRet 4 (const $ return ())
      validate "4 === x" $ x === 4
  , CheckPlan "allocRet 4 _ :: UArray Int16 === 4" $ do
      x <- pick "allocateRet 4 _" $ (B.length :: UArray Int16 -> Int) . snd <$> B.allocRet 4 (const $ return ())
      validate "4 === x" $ x === 4
  , CheckPlan "allocRet 4 _ :: UArray Int32 === 4" $ do
      x <- pick "allocateRet 4 _" $ (B.length :: UArray Int32 -> Int) . snd <$> B.allocRet 4 (const $ return ())
      validate "4 === x" $ x === 4
  , CheckPlan "allocRet 4 _ :: UArray Int64 === 8" $ do
      x <- pick "allocateRet 4 _" $ (B.length :: UArray Int64 -> Int) . snd <$> B.allocRet 4 (const $ return ())
      validate "8 === x" $ x === 8
  ]
#endif