File: Word.hs

package info (click to toggle)
haskell-mod 0.2.0.1-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 148 kB
  • sloc: haskell: 1,413; ansic: 10; makefile: 6
file content (516 lines) | stat: -rw-r--r-- 17,598 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
-- |
-- Module:      Data.Mod.Word
-- Copyright:   (c) 2017-2022 Andrew Lelechenko
-- Licence:     MIT
-- Maintainer:  Andrew Lelechenko <andrew.lelechenko@gmail.com>
--
-- <https://en.wikipedia.org/wiki/Modular_arithmetic Modular arithmetic>,
-- promoting moduli to the type level, with an emphasis on performance.
-- Originally part of the <https://hackage.haskell.org/package/arithmoi arithmoi> package.
--
-- This module supports only moduli, which fit into 'Word'.
-- Use the (slower) "Data.Mod" module for handling arbitrary-sized moduli.

{-# LANGUAGE BangPatterns               #-}
{-# LANGUAGE CPP                        #-}
{-# LANGUAGE DataKinds                  #-}
{-# LANGUAGE DeriveGeneric              #-}
{-# LANGUAGE DerivingStrategies         #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash                  #-}
{-# LANGUAGE MultiParamTypeClasses      #-}
{-# LANGUAGE TypeApplications           #-}
{-# LANGUAGE TypeFamilies               #-}
{-# LANGUAGE UnboxedTuples              #-}

module Data.Mod.Word
  ( Mod
  , unMod
  , invertMod
  , (^%)
  ) where

import Prelude as P hiding (even)
import Control.Exception
import Control.DeepSeq
import Data.Bits
import Data.Mod.Compat (timesWord2#, remWord2#)
import Data.Ratio
#ifdef MIN_VERSION_semirings
import Data.Euclidean (GcdDomain(..), Euclidean(..), Field)
import Data.Semiring (Semiring(..), Ring(..))
#endif
#ifdef MIN_VERSION_vector
import Data.Primitive (Prim)
import qualified Data.Vector.Generic         as G
import qualified Data.Vector.Generic.Mutable as M
import qualified Data.Vector.Primitive       as P
import qualified Data.Vector.Unboxed         as U
#endif
import Foreign.Storable (Storable)
import GHC.Exts hiding (timesWord2#, quotRemWord2#)
import GHC.Generics
import GHC.Natural (Natural(..))
import GHC.Num.BigNat
import GHC.Num.Integer
import GHC.TypeNats (Nat, KnownNat, natVal)
import Text.Read (Read(readPrec))

-- | This data type represents
-- <https://en.wikipedia.org/wiki/Modular_arithmetic#Integers_modulo_n integers modulo m>,
-- equipped with useful instances.
--
-- For example, 3 :: 'Mod' 10 stands for the class of integers
-- congruent to \( 3 \bmod 10 \colon \ldots {−17}, −7, 3, 13, 23 \ldots \)
--
-- >>> :set -XDataKinds
-- >>> 3 + 8 :: Mod 10 -- 3 + 8 = 11 ≡ 1 (mod 10)
-- 1
--
-- __Note:__ 'Mod' 0 has no inhabitants, eventhough \( \mathbb{Z}/0\mathbb{Z} \) is technically isomorphic to \( \mathbb{Z} \).
newtype Mod (m :: Nat) = Mod
  { unMod :: Word
  -- ^ The canonical representative of the residue class,
  -- always between 0 and \( m - 1 \) (inclusively).
  --
  -- >>> :set -XDataKinds
  -- >>> -1 :: Mod 10
  -- 9
  }
  deriving (Eq, Ord, Generic)
  deriving Storable
  -- ^ No validation checks are performed;
  -- reading untrusted data may corrupt internal invariants.
#ifdef MIN_VERSION_vector
  deriving Prim
  -- ^ No validation checks are performed;
  -- reading untrusted data may corrupt internal invariants.
#endif

instance NFData (Mod m)

instance Show (Mod m) where
  show (Mod x) = show x

-- | Wrapping behaviour, similar to
-- the existing @instance@ 'Read' 'Int'.
instance KnownNat m => Read (Mod m) where
  readPrec = fromInteger <$> readPrec

instance KnownNat m => Real (Mod m) where
  toRational (Mod x) = toRational x

instance KnownNat m => Enum (Mod m) where
  succ x = if x == maxBound then throw Overflow  else coerce (succ @Word) x
  pred x = if x == minBound then throw Underflow else coerce (pred @Word) x

  toEnum   = fromIntegral
  fromEnum = fromIntegral . unMod

  enumFrom x       = enumFromTo x maxBound
  enumFromThen x y = enumFromThenTo x y (if y >= x then maxBound else minBound)

  enumFromTo     = coerce (enumFromTo     @Word)
  enumFromThenTo = coerce (enumFromThenTo @Word)

instance KnownNat m => Bounded (Mod m) where
  minBound = mx
    where
      mx = if natVal mx > 0 then Mod 0 else throw DivideByZero
  maxBound = mx
    where
      mx = if m > 0 then Mod (fromIntegral (m - 1)) else throw DivideByZero
      m = natVal mx

addMod :: Natural -> Word -> Word -> Word
addMod (NatS# m#) (W# x#) (W# y#) =
  if isTrue# c# || isTrue# (z# `geWord#` m#) then W# (z# `minusWord#` m#) else W# z#
  where
    !(# z#, c# #) = x# `addWordC#` y#
addMod NatJ#{} _ _ = tooLargeModulus

subMod :: Natural -> Word -> Word -> Word
subMod (NatS# m#) (W# x#) (W# y#) =
  if isTrue# (x# `geWord#` y#) then W# z# else W# (z# `plusWord#` m#)
  where
    z# = x# `minusWord#` y#
subMod NatJ#{} _ _ = tooLargeModulus

negateMod :: Natural -> Word -> Word
negateMod _ (W# 0##) = W# 0##
negateMod (NatS# m#) (W# x#) = W# (m# `minusWord#` x#)
negateMod NatJ#{} _ = tooLargeModulus

halfWord :: Word
halfWord = 1 `shiftL` (finiteBitSize (0 :: Word) `shiftR` 1)

mulMod :: Natural -> Word -> Word -> Word
mulMod (NatS# m#) (W# x#) (W# y#)
  | W# m# <= halfWord = W# (timesWord# x# y# `remWord#` m#)
  | otherwise = W# r#
  where
    !(# hi#, lo# #) = timesWord2# x# y#
    !r# = remWord2# lo# hi# m#
mulMod NatJ#{} _ _ = tooLargeModulus

fromIntegerMod :: Natural -> Integer -> Word
fromIntegerMod (NatS# 0##) !_ = throw DivideByZero
fromIntegerMod (NatS# m#) (IS x#) =
  if isTrue# (x# >=# 0#)
    then W# (int2Word# x# `remWord#` m#)
    else negateMod (NatS# m#) (W# (int2Word# (negateInt# x#) `remWord#` m#))
fromIntegerMod (NatS# m#) (IP x#) =
  W# (x# `bigNatRemWord#` m#)
fromIntegerMod (NatS# m#) (IN x#) =
  negateMod (NatS# m#) (W# (x# `bigNatRemWord#` m#))
fromIntegerMod NatJ#{} _ = tooLargeModulus

#ifdef MIN_VERSION_semirings

fromNaturalMod :: Natural -> Natural -> Word
fromNaturalMod (NatS# 0##) !_ = throw DivideByZero
fromNaturalMod (NatS# m#) (NatS# x#) = W# (x# `remWord#` m#)
fromNaturalMod (NatS# m#) (NatJ# (BN# x#)) = W# (x# `bigNatRemWord#` m#)
fromNaturalMod NatJ#{} _ = tooLargeModulus

getModulus :: Natural -> Word
getModulus (NatS# m#) = W# m#
getModulus NatJ#{} = tooLargeModulus

#endif

tooLargeModulus :: a
tooLargeModulus = error "modulus does not fit into a machine word"

instance KnownNat m => Num (Mod m) where
  mx@(Mod !x) + (Mod !y) = Mod $ addMod (natVal mx) x y
  {-# INLINE (+) #-}
  mx@(Mod !x) - (Mod !y) = Mod $ subMod (natVal mx) x y
  {-# INLINE (-) #-}
  negate mx@(Mod !x) = Mod $ negateMod (natVal mx) x
  {-# INLINE negate #-}
  mx@(Mod !x) * (Mod !y) = Mod $ mulMod (natVal mx) x y
  {-# INLINE (*) #-}
  abs = id
  {-# INLINE abs #-}
  signum = const x
    where
      x = if natVal x > 1 then Mod 1 else Mod 0
  {-# INLINE signum #-}
  fromInteger x = mx
    where
      mx = Mod $ fromIntegerMod (natVal mx) x
  {-# INLINE fromInteger #-}

#ifdef MIN_VERSION_semirings

instance KnownNat m => Semiring (Mod m) where
  plus  = (+)
  {-# INLINE plus #-}
  times = (*)
  {-# INLINE times #-}
  zero  = mx
    where
      mx = if natVal mx > 0 then Mod 0 else throw DivideByZero
  {-# INLINE zero #-}
  one   = mx
    where
      mx = case m `compare` 1 of
        LT -> throw DivideByZero
        EQ -> Mod 0
        GT -> Mod 1
      m = natVal mx
  {-# INLINE one #-}
  fromNatural x = mx
    where
      mx = Mod $ fromNaturalMod (natVal mx) x
  {-# INLINE fromNatural #-}

instance KnownNat m => Ring (Mod m) where
  negate = P.negate
  {-# INLINE negate #-}

-- | 'Mod' @m@ is not even an
-- <https://en.wikipedia.org/wiki/Integral_domain integral domain> for
-- <https://en.wikipedia.org/wiki/Composite_number composite> @m@,
-- much less a <https://en.wikipedia.org/wiki/GCD_domain GCD domain>.
-- However, 'Data.Euclidean.gcd' and 'Data.Euclidean.lcm' are still meaningful
-- even for composite @m@, corresponding to a sum and an intersection of
-- <https://en.wikipedia.org/wiki/Ideal_(ring_theory) ideals>.
--
-- The instance is lawful only for
-- <https://en.wikipedia.org/wiki/Prime_number prime> @m@, otherwise
-- @'Data.Euclidean.divide' x y@ tries to return any @Just z@ such that @x == y * z@.
--
instance KnownNat m => GcdDomain (Mod m) where
  divide (Mod 0) !_ = Just (Mod 0)
  divide _ (Mod 0) = Nothing
  divide mx@(Mod x) (Mod y) = case mry of
    Just ry -> if xr == 0 then Just (Mod xq * Mod ry) else Nothing
    Nothing -> Nothing
    where
      m = getModulus (natVal mx)
      gmy = P.gcd m y
      (xq, xr) = P.quotRem x gmy
      mry = invertModWord (y `P.quot` gmy)  (m `P.quot` gmy)

  gcd (Mod !x) (Mod !y) = g
    where
      m = getModulus (natVal g)
      g = Mod $ if m > 1 then P.gcd (P.gcd m x) y else 0
  lcm (Mod !x) (Mod !y) = l
    where
      m = getModulus (natVal l)
      l = Mod $ if m > 1 then P.lcm (P.gcd m x) (P.gcd m y) else 0
  coprime x y = Data.Euclidean.gcd x y == one

-- | 'Mod' @m@ is not even an
-- <https://en.wikipedia.org/wiki/Integral_domain integral domain> for
-- <https://en.wikipedia.org/wiki/Composite_number composite> @m@,
-- much less a <https://en.wikipedia.org/wiki/Euclidean_domain Euclidean domain>.
--
-- The instance is lawful only for
-- <https://en.wikipedia.org/wiki/Prime_number prime> @m@, otherwise
-- we try to do our best:
-- @'Data.Euclidean.quot' x y@ returns any @z@ such that @x == y * z@,
-- 'Data.Euclidean.rem' is not always 0, and both can throw 'DivideByZero'.
--
instance KnownNat m => Euclidean (Mod m) where
  degree = fromIntegral . unMod

  quotRem (Mod 0) !_ = (Mod 0, Mod 0)
  quotRem _ (Mod 0) = throw DivideByZero
  quotRem mx@(Mod x) (Mod y) = case mry of
    Just ry -> (Mod xq * Mod ry, Mod xr)
    Nothing -> throw DivideByZero
    where
      m = getModulus (natVal mx)
      gmy = P.gcd m y
      (xq, xr) = P.quotRem x gmy
      mry = invertModWord (y `P.quot` gmy)  (m `P.quot` gmy)

-- | 'Mod' @m@ is not even an
-- <https://en.wikipedia.org/wiki/Integral_domain integral domain> for
-- <https://en.wikipedia.org/wiki/Composite_number composite> @m@,
-- much less a <https://en.wikipedia.org/wiki/Field_(mathematics) field>.
--
-- The instance is lawful only for
-- <https://en.wikipedia.org/wiki/Prime_number prime> @m@, otherwise
-- division by a residue, which is not
-- <https://en.wikipedia.org/wiki/Coprime_integers coprime>
-- with the modulus, throws 'DivideByZero'.
-- Consider using 'invertMod' for non-prime moduli.
--
instance KnownNat m => Field (Mod m)

#endif

-- | Division by a residue, which is not
-- <https://en.wikipedia.org/wiki/Coprime_integers coprime>
-- with the modulus, throws 'DivideByZero'.
-- Consider using 'invertMod' for non-prime moduli.
instance KnownNat m => Fractional (Mod m) where
  fromRational r = case denominator r of
    1   -> num
    den -> num / fromInteger den
    where
      num = fromInteger (numerator r)
  {-# INLINE fromRational #-}
  recip mx = case invertMod mx of
    Nothing -> throw DivideByZero
    Just y  -> y
  {-# INLINE recip #-}

-- | If an argument is
-- <https://en.wikipedia.org/wiki/Coprime_integers coprime>
-- with the modulus, return its modular inverse.
-- Otherwise return 'Nothing'.
--
-- >>> :set -XDataKinds
-- >>> invertMod 3 :: Mod 10 -- 3 * 7 = 21 ≡ 1 (mod 10)
-- Just 7
-- >>> invertMod 4 :: Mod 10 -- 4 and 10 are not coprime
-- Nothing
invertMod :: KnownNat m => Mod m -> Maybe (Mod m)
invertMod mx@(Mod !x) = case natVal mx of
  NatJ#{}   -> tooLargeModulus
  NatS# 0## -> Nothing
  NatS# m#  -> Mod <$> invertModWord x (W# m#)

invertModWord :: Word -> Word -> Maybe Word
invertModWord x m@(W# m#)
  -- If both x and m are even, no inverse exists
  | even x, isTrue# (k# `gtWord#` 0##) = Nothing
  | otherwise = case invertModWordOdd x m' of
    Nothing -> Nothing
    -- goDouble cares only about mod 2^k,
    -- so overflows and underflows in (1 - x * y) are fine
    Just y -> Just $ goDouble y (1 - x * y)
  where
    k# = ctz# m#
    m' = m `unsafeShiftR` I# (word2Int# k#)

    xm' = x * m'

    goDouble :: Word -> Word -> Word
    goDouble acc r@(W# r#)
      | isTrue# (tz# `geWord#` k#)
      = acc
      | otherwise
      = goDouble (acc + m' `unsafeShiftL` tz) (r - xm' `unsafeShiftL` tz)
      where
        tz# = ctz# r#
        tz = I# (word2Int# tz#)

-- | Extended binary gcd.
-- The second argument must be odd.
invertModWordOdd :: Word -> Word -> Maybe Word
invertModWordOdd 0 !_ = Nothing
invertModWordOdd !x !m = go00 0 m 1 x
  where
    halfMp1 :: Word
    halfMp1 = half m + 1

    -- Both s and s' may be even
    go00 :: Word -> Word -> Word -> Word -> Maybe Word
    go00 !r !s !r' !s'
      | even s = let (# hr, hs #) = doHalf r s in go00 hr hs r' s'
      | otherwise = go10 r s r' s'

    -- Here s is odd, s' may be even
    go10 :: Word -> Word -> Word -> Word -> Maybe Word
    go10 !r !s !r' !s'
      | even s' = let (# hr', hs' #) = doHalf r' s' in go10 r s hr' hs'
      | otherwise = go11 r s r' s'

    -- Here s may be even, s' is odd
    go01 :: Word -> Word -> Word -> Word -> Maybe Word
    go01 !r !s !r' !s'
      | even s = let (# hr, hs #) = doHalf r s in go01 hr hs r' s'
      | otherwise = go11 r s r' s'

    -- Both s and s' are odd
    go11 :: Word -> Word -> Word -> Word -> Maybe Word
    go11 !r !s !r' !s' = case s `compare` s' of
      EQ -> if s == 1 then Just r else Nothing
      LT -> let newR' = r' - r + (r `ge` r') * m in
            let newS' = s' - s in
            let (# hr', hs' #) = doHalf newR' newS' in
            go10 r s hr' hs'
      GT -> let newR = r - r' + (r' `ge` r) * m in
            let newS = s - s' in
            let (# hr, hs #) = doHalf newR newS in
            go01 hr hs r' s'

    doHalf :: Word -> Word -> (# Word, Word #)
    doHalf r s = (# half r + (r .&. 1) * halfMp1, half s #)
    {-# INLINE doHalf #-}

-- | ge x y returns 1 is x >= y and 0 otherwise.
ge :: Word -> Word -> Word
ge (W# x) (W# y) = W# (int2Word# (x `geWord#` y))

even :: Word -> Bool
even x = (x .&. 1) == 0
{-# INLINE even #-}

half :: Word -> Word
half x = x `shiftR` 1
{-# INLINE half #-}

-- | Drop-in replacement for 'Prelude.^' with a bit better performance.
-- Negative powers are allowed, but may throw 'DivideByZero', if an argument
-- is not <https://en.wikipedia.org/wiki/Coprime_integers coprime> with the modulus.
--
-- >>> :set -XDataKinds
-- >>> 3 ^% 4 :: Mod 10    -- 3 ^ 4 = 81 ≡ 1 (mod 10)
-- 1
-- >>> 3 ^% (-1) :: Mod 10 -- 3 * 7 = 21 ≡ 1 (mod 10)
-- 7
-- >>> 4 ^% (-1) :: Mod 10 -- 4 and 10 are not coprime
-- (*** Exception: divide by zero
(^%) :: (KnownNat m, Integral a) => Mod m -> a -> Mod m
mx@(Mod !x) ^% a = case natVal mx of
  NatJ#{} -> tooLargeModulus
  m@(NatS# _)
    | a < 0 -> case invertMod mx of
      Nothing      -> throw DivideByZero
      Just (Mod y) -> Mod $ f y (-a) 1
    | otherwise    -> Mod $ f x a 1
    where
      f !_ 0 acc = acc
      f b  e acc = f (mulMod m b b) (e `P.quot` 2) (if odd e then mulMod m b acc else acc)
{-# INLINABLE [1] (^%) #-}

{-# SPECIALISE [1] (^%) ::
  KnownNat m => Mod m -> Integer -> Mod m,
  KnownNat m => Mod m -> Natural -> Mod m,
  KnownNat m => Mod m -> Int     -> Mod m,
  KnownNat m => Mod m -> Word    -> Mod m #-}

{-# RULES
"powMod/2/Integer"     forall x. x ^% (2 :: Integer) = let u = x in u*u
"powMod/3/Integer"     forall x. x ^% (3 :: Integer) = let u = x in u*u*u
"powMod/2/Int"         forall x. x ^% (2 :: Int)     = let u = x in u*u
"powMod/3/Int"         forall x. x ^% (3 :: Int)     = let u = x in u*u*u
"powMod/2/Word"        forall x. x ^% (2 :: Word)    = let u = x in u*u
"powMod/3/Word"        forall x. x ^% (3 :: Word)    = let u = x in u*u*u #-}

infixr 8 ^%

#ifdef MIN_VERSION_vector

newtype instance U.MVector s (Mod m) = MV_Mod (P.MVector s Word)
newtype instance U.Vector    (Mod m) = V_Mod  (P.Vector    Word)

-- | No validation checks are performed;
-- reading untrusted data may corrupt internal invariants.
instance U.Unbox (Mod m)

-- | No validation checks are performed;
-- reading untrusted data may corrupt internal invariants.
instance M.MVector U.MVector (Mod m) where
  {-# INLINE basicLength #-}
  {-# INLINE basicUnsafeSlice #-}
  {-# INLINE basicOverlaps #-}
  {-# INLINE basicUnsafeNew #-}
  {-# INLINE basicInitialize #-}
  {-# INLINE basicUnsafeReplicate #-}
  {-# INLINE basicUnsafeRead #-}
  {-# INLINE basicUnsafeWrite #-}
  {-# INLINE basicClear #-}
  {-# INLINE basicSet #-}
  {-# INLINE basicUnsafeCopy #-}
  {-# INLINE basicUnsafeGrow #-}
  basicLength (MV_Mod v) = M.basicLength v
  basicUnsafeSlice i n (MV_Mod v) = MV_Mod $ M.basicUnsafeSlice i n v
  basicOverlaps (MV_Mod v1) (MV_Mod v2) = M.basicOverlaps v1 v2
  basicUnsafeNew n = MV_Mod <$> M.basicUnsafeNew n
  basicInitialize (MV_Mod v) = M.basicInitialize v
  basicUnsafeReplicate n x = MV_Mod <$> M.basicUnsafeReplicate n (unMod x)
  basicUnsafeRead (MV_Mod v) i = Mod <$> M.basicUnsafeRead v i
  basicUnsafeWrite (MV_Mod v) i x = M.basicUnsafeWrite v i (unMod x)
  basicClear (MV_Mod v) = M.basicClear v
  basicSet (MV_Mod v) x = M.basicSet v (unMod x)
  basicUnsafeCopy (MV_Mod v1) (MV_Mod v2) = M.basicUnsafeCopy v1 v2
  basicUnsafeMove (MV_Mod v1) (MV_Mod v2) = M.basicUnsafeMove v1 v2
  basicUnsafeGrow (MV_Mod v) n = MV_Mod <$> M.basicUnsafeGrow v n

-- | No validation checks are performed;
-- reading untrusted data may corrupt internal invariants.
instance G.Vector U.Vector (Mod m) where
  {-# INLINE basicUnsafeFreeze #-}
  {-# INLINE basicUnsafeThaw #-}
  {-# INLINE basicLength #-}
  {-# INLINE basicUnsafeSlice #-}
  {-# INLINE basicUnsafeIndexM #-}
  {-# INLINE elemseq #-}
  basicUnsafeFreeze (MV_Mod v) = V_Mod <$> G.basicUnsafeFreeze v
  basicUnsafeThaw (V_Mod v) = MV_Mod <$> G.basicUnsafeThaw v
  basicLength (V_Mod v) = G.basicLength v
  basicUnsafeSlice i n (V_Mod v) = V_Mod $ G.basicUnsafeSlice i n v
  basicUnsafeIndexM (V_Mod v) i = Mod <$> G.basicUnsafeIndexM v i
  basicUnsafeCopy (MV_Mod mv) (V_Mod v) = G.basicUnsafeCopy mv v
  elemseq _ = seq

#endif