1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fno-warn-type-defaults -fno-warn-name-shadowing #-}
module Main where
import Data.Proxy
import Test.Tasty.Bench
import qualified Data.Mod
import qualified Data.Mod.Word
#ifdef MIN_VERSION_finite_field
import qualified Data.FiniteField.PrimeField
#endif
#ifdef MIN_VERSION_finite_typelits
import qualified Data.Finite
#endif
#ifdef MIN_VERSION_modular_arithmetic
import qualified Data.Modular
#endif
#ifdef MIN_VERSION_modular
import qualified Numeric.Modular
#endif
type P = 20000003
#ifdef MIN_VERSION_modular
forceModular :: Numeric.Modular.Mod P -> Numeric.Modular.Mod P
forceModular a = (a == a) `seq` a
#endif
benchSum :: Benchmark
benchSum = bgroup "Sum"
[ measure "Data.Mod" (Proxy @Data.Mod.Mod)
, cmp $ measure "Data.Mod.Word" (Proxy @Data.Mod.Word.Mod)
#ifdef MIN_VERSION_finite_field
, cmp $ measure "finite-field" (Proxy @Data.FiniteField.PrimeField.PrimeField)
#endif
#ifdef MIN_VERSION_finite_typelits
, cmp $ measure "finite-typelits" (Proxy @Data.Finite.Finite)
#endif
#ifdef MIN_VERSION_modular_arithmetic
, cmp $ measure "modular-arithmetic" (Proxy @(Data.Modular.Mod Integer))
#endif
#ifdef MIN_VERSION_modular
, cmp $ bench "modular" $ nf (show . sumNModular) lim
#endif
]
where
cmp = bcompare "$NF == \"Data.Mod\" && $(NF-1) == \"Sum\""
lim = 20000000
measure :: (Eq (t P), Num (t P)) => String -> Proxy t -> Benchmark
measure name p = bench name $ whnf (sumN p) lim
{-# INLINE measure #-}
sumN :: forall t. (Eq (t P), Num (t P)) => Proxy t -> Int -> t P
sumN = const $ \n -> go 0 (fromIntegral n)
where
go :: t P -> t P -> t P
go !acc 0 = acc
go acc n = go (acc + n) (n - 1)
{-# INLINE sumN #-}
#ifdef MIN_VERSION_modular
sumNModular :: Int -> Numeric.Modular.Mod P
sumNModular = \n -> go 0 (fromIntegral n)
where
go :: Numeric.Modular.Mod P -> Numeric.Modular.Mod P -> Numeric.Modular.Mod P
go acc@(forceModular -> !_) 0 = acc
go acc n = go (acc + n) (n - 1)
{-# INLINE sumNModular #-}
#endif
benchProduct :: Benchmark
benchProduct = bgroup "Product"
[ measure "Data.Mod" (Proxy @Data.Mod.Mod)
, cmp $ measure "Data.Mod.Word" (Proxy @Data.Mod.Word.Mod)
#ifdef MIN_VERSION_finite_field
, cmp $ measure "finite-field" (Proxy @Data.FiniteField.PrimeField.PrimeField)
#endif
#ifdef MIN_VERSION_finite_typelits
, cmp $ measure "finite-typelits" (Proxy @Data.Finite.Finite)
#endif
#ifdef MIN_VERSION_modular_arithmetic
, cmp $ measure "modular-arithmetic" (Proxy @(Data.Modular.Mod Integer))
#endif
#ifdef MIN_VERSION_modular
, cmp $ bench "modular" $ nf (show . productNModular) lim
#endif
]
where
cmp = bcompare "$NF == \"Data.Mod\" && $(NF-1) == \"Product\""
lim = 20000000
measure :: (Eq (t P), Num (t P)) => String -> Proxy t -> Benchmark
measure name p = bench name $ whnf (productN p) lim
{-# INLINE measure #-}
productN :: forall t. (Eq (t P), Num (t P)) => Proxy t -> Int -> t P
productN = const $ \n -> go 1 (fromIntegral n)
where
go :: t P -> t P -> t P
go !acc 0 = acc
go acc n = go (acc * n) (n - 1)
{-# INLINE productN #-}
#ifdef MIN_VERSION_modular
productNModular :: Int -> Numeric.Modular.Mod P
productNModular = \n -> go 1 (fromIntegral n)
where
go :: Numeric.Modular.Mod P -> Numeric.Modular.Mod P -> Numeric.Modular.Mod P
go acc@(forceModular -> !_) 0 = acc
go acc n = go (acc * n) (n - 1)
{-# INLINE productNModular #-}
#endif
benchInversion :: Benchmark
benchInversion = bgroup "Inversion"
[ measure "Data.Mod" (Proxy @Data.Mod.Mod)
, cmp $ measure "Data.Mod.Word" (Proxy @Data.Mod.Word.Mod)
#ifdef MIN_VERSION_finite_field
, cmp $ measure "finite-field" (Proxy @Data.FiniteField.PrimeField.PrimeField)
#endif
#ifdef MIN_VERSION_modular_arithmetic
, cmp $ measure "modular-arithmetic" (Proxy @(Data.Modular.Mod Integer))
#endif
]
where
cmp = bcompare "$NF == \"Data.Mod\" && $(NF-1) == \"Inversion\""
lim = 1500000
measure :: (Eq (t P), Fractional (t P)) => String -> Proxy t -> Benchmark
measure name p = bench name $ whnf (invertN p) lim
{-# INLINE measure #-}
invertN :: forall t. (Eq (t P), Fractional (t P)) => Proxy t -> Int -> t P
invertN = const $ \n -> go 0 (fromIntegral n)
where
go :: t P -> t P -> t P
go !acc 0 = acc
go acc n = go (acc + recip n) (n - 1)
{-# INLINE invertN #-}
benchPower :: Benchmark
benchPower = bgroup "Power"
[ bench "Data.Mod" $ nf powerNMod lim
, cmp $ bench "Data.Mod.Word" $ nf powerNModWord lim
#ifdef MIN_VERSION_finite_field
, cmp $ measure "finite-field" (Proxy @Data.FiniteField.PrimeField.PrimeField)
#endif
#ifdef MIN_VERSION_finite_typelits
, cmp $ measure "finite-typelits" (Proxy @Data.Finite.Finite)
#endif
#ifdef MIN_VERSION_modular_arithmetic
, cmp $ measure "modular-arithmetic" (Proxy @(Data.Modular.Mod Integer))
#endif
#ifdef MIN_VERSION_modular
, cmp $ bench "modular" $ nf (show . powerNModular) lim
#endif
]
where
cmp = bcompare "$NF == \"Data.Mod\" && $(NF-1) == \"Power\""
lim = 1000000
powerNMod :: Int -> Data.Mod.Mod P
powerNMod = go 0
where
go :: Data.Mod.Mod P -> Int -> Data.Mod.Mod P
go !acc 0 = acc
go acc n = go (acc + 2 Data.Mod.^% n) (n - 1)
{-# INLINE powerNMod #-}
powerNModWord :: Int -> Data.Mod.Word.Mod P
powerNModWord = go 0
where
go :: Data.Mod.Word.Mod P -> Int -> Data.Mod.Word.Mod P
go !acc 0 = acc
go acc n = go (acc + 2 Data.Mod.Word.^% n) (n - 1)
{-# INLINE powerNModWord #-}
#if defined(MIN_VERSION_finite_field) || defined(MIN_VERSION_modular_arithmetic)
measure :: (Eq (t P), Num (t P)) => String -> Proxy t -> Benchmark
measure name p = bench name $ whnf (powerN p) lim
{-# INLINE measure #-}
powerN :: forall t. (Eq (t P), Num (t P)) => Proxy t -> Int -> t P
powerN = const $ go 0
where
go :: t P -> Int -> t P
go !acc 0 = acc
go acc n = go (acc + 2 ^ n) (n - 1)
{-# INLINE powerN #-}
#endif
#ifdef MIN_VERSION_modular
powerNModular :: Int -> Numeric.Modular.Mod P
powerNModular = go 0
where
go :: Numeric.Modular.Mod P -> Int -> Numeric.Modular.Mod P
go acc@(forceModular -> !_) 0 = acc
go acc n = go (acc + 2 ^ n) (n - 1)
{-# INLINE powerNModular #-}
#endif
main :: IO ()
main = defaultMain
[ benchSum
, benchProduct
, benchInversion
, benchPower
]
|