File: Bench.hs

package info (click to toggle)
haskell-mod 0.2.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 148 kB
  • sloc: haskell: 1,422; ansic: 10; makefile: 3
file content (218 lines) | stat: -rw-r--r-- 6,808 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
{-# LANGUAGE BangPatterns        #-}
{-# LANGUAGE CPP                 #-}
{-# LANGUAGE DataKinds           #-}
{-# LANGUAGE PolyKinds           #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications    #-}
{-# LANGUAGE ViewPatterns        #-}

{-# OPTIONS_GHC -fno-warn-type-defaults -fno-warn-name-shadowing #-}

module Main where

import Data.Proxy
import Test.Tasty.Bench

import qualified Data.Mod
import qualified Data.Mod.Word
#ifdef MIN_VERSION_finite_field
import qualified Data.FiniteField.PrimeField
#endif
#ifdef MIN_VERSION_finite_typelits
import qualified Data.Finite
#endif
#ifdef MIN_VERSION_modular_arithmetic
import qualified Data.Modular
#endif
#ifdef MIN_VERSION_modular
import qualified Numeric.Modular
#endif

type P = 20000003

#ifdef MIN_VERSION_modular
forceModular :: Numeric.Modular.Mod P -> Numeric.Modular.Mod P
forceModular a = (a == a) `seq` a
#endif

benchSum :: Benchmark
benchSum = bgroup "Sum"
  [ measure "Data.Mod" (Proxy @Data.Mod.Mod)
  , cmp $ measure "Data.Mod.Word" (Proxy @Data.Mod.Word.Mod)
#ifdef MIN_VERSION_finite_field
  , cmp $ measure "finite-field" (Proxy @Data.FiniteField.PrimeField.PrimeField)
#endif
#ifdef MIN_VERSION_finite_typelits
  , cmp $ measure "finite-typelits" (Proxy @Data.Finite.Finite)
#endif
#ifdef MIN_VERSION_modular_arithmetic
  , cmp $ measure "modular-arithmetic" (Proxy @(Data.Modular.Mod Integer))
#endif
#ifdef MIN_VERSION_modular
  , cmp $ bench "modular" $ nf (show . sumNModular) lim
#endif
  ]
  where
    cmp = bcompare "$NF == \"Data.Mod\" && $(NF-1) == \"Sum\""
    lim = 20000000

    measure :: (Eq (t P), Num (t P)) => String -> Proxy t -> Benchmark
    measure name p = bench name $ whnf (sumN p) lim
    {-# INLINE measure #-}

    sumN :: forall t. (Eq (t P), Num (t P)) => Proxy t -> Int -> t P
    sumN = const $ \n -> go 0 (fromIntegral n)
      where
        go :: t P -> t P -> t P
        go !acc 0 = acc
        go acc n = go (acc + n) (n - 1)
    {-# INLINE sumN #-}

#ifdef MIN_VERSION_modular
    sumNModular :: Int -> Numeric.Modular.Mod P
    sumNModular = \n -> go 0 (fromIntegral n)
      where
        go :: Numeric.Modular.Mod P -> Numeric.Modular.Mod P -> Numeric.Modular.Mod P
        go acc@(forceModular -> !_) 0 = acc
        go acc n = go (acc + n) (n - 1)
    {-# INLINE sumNModular #-}
#endif

benchProduct :: Benchmark
benchProduct = bgroup "Product"
  [ measure "Data.Mod" (Proxy @Data.Mod.Mod)
  , cmp $ measure "Data.Mod.Word" (Proxy @Data.Mod.Word.Mod)
#ifdef MIN_VERSION_finite_field
  , cmp $ measure "finite-field" (Proxy @Data.FiniteField.PrimeField.PrimeField)
#endif
#ifdef MIN_VERSION_finite_typelits
  , cmp $ measure "finite-typelits" (Proxy @Data.Finite.Finite)
#endif
#ifdef MIN_VERSION_modular_arithmetic
  , cmp $ measure "modular-arithmetic" (Proxy @(Data.Modular.Mod Integer))
#endif
#ifdef MIN_VERSION_modular
  , cmp $ bench "modular" $ nf (show . productNModular) lim
#endif
  ]
  where
    cmp = bcompare "$NF == \"Data.Mod\" && $(NF-1) == \"Product\""
    lim = 20000000

    measure :: (Eq (t P), Num (t P)) => String -> Proxy t -> Benchmark
    measure name p = bench name $ whnf (productN p) lim
    {-# INLINE measure #-}

    productN :: forall t. (Eq (t P), Num (t P)) => Proxy t -> Int -> t P
    productN = const $ \n -> go 1 (fromIntegral n)
      where
        go :: t P -> t P -> t P
        go !acc 0 = acc
        go acc n = go (acc * n) (n - 1)
    {-# INLINE productN #-}

#ifdef MIN_VERSION_modular
    productNModular :: Int -> Numeric.Modular.Mod P
    productNModular = \n -> go 1 (fromIntegral n)
      where
        go :: Numeric.Modular.Mod P -> Numeric.Modular.Mod P -> Numeric.Modular.Mod P
        go acc@(forceModular -> !_) 0 = acc
        go acc n = go (acc * n) (n - 1)
    {-# INLINE productNModular #-}
#endif

benchInversion :: Benchmark
benchInversion = bgroup "Inversion"
  [ measure "Data.Mod" (Proxy @Data.Mod.Mod)
  , cmp $ measure "Data.Mod.Word" (Proxy @Data.Mod.Word.Mod)
#ifdef MIN_VERSION_finite_field
  , cmp $ measure "finite-field" (Proxy @Data.FiniteField.PrimeField.PrimeField)
#endif
#ifdef MIN_VERSION_modular_arithmetic
  , cmp $ measure "modular-arithmetic" (Proxy @(Data.Modular.Mod Integer))
#endif
  ]
  where
    cmp = bcompare "$NF == \"Data.Mod\" && $(NF-1) == \"Inversion\""
    lim = 1500000

    measure :: (Eq (t P), Fractional (t P)) => String -> Proxy t -> Benchmark
    measure name p = bench name $ whnf (invertN p) lim
    {-# INLINE measure #-}

    invertN :: forall t. (Eq (t P), Fractional (t P)) => Proxy t -> Int -> t P
    invertN = const $ \n -> go 0 (fromIntegral n)
      where
        go :: t P -> t P -> t P
        go !acc 0 = acc
        go acc n = go (acc + recip n) (n - 1)
    {-# INLINE invertN #-}

benchPower :: Benchmark
benchPower = bgroup "Power"
  [ bench "Data.Mod" $ nf powerNMod lim
  , cmp $ bench "Data.Mod.Word" $ nf powerNModWord lim
#ifdef MIN_VERSION_finite_field
  , cmp $ measure "finite-field" (Proxy @Data.FiniteField.PrimeField.PrimeField)
#endif
#ifdef MIN_VERSION_finite_typelits
  , cmp $ measure "finite-typelits" (Proxy @Data.Finite.Finite)
#endif
#ifdef MIN_VERSION_modular_arithmetic
  , cmp $ measure "modular-arithmetic" (Proxy @(Data.Modular.Mod Integer))
#endif
#ifdef MIN_VERSION_modular
  , cmp $ bench "modular" $ nf (show . powerNModular) lim
#endif
  ]
  where
    cmp = bcompare "$NF == \"Data.Mod\" && $(NF-1) == \"Power\""
    lim = 1000000

    powerNMod :: Int -> Data.Mod.Mod P
    powerNMod = go 0
      where
        go :: Data.Mod.Mod P -> Int -> Data.Mod.Mod P
        go !acc 0 = acc
        go acc n = go (acc + 2 Data.Mod.^% n) (n - 1)
    {-# INLINE powerNMod #-}

    powerNModWord :: Int -> Data.Mod.Word.Mod P
    powerNModWord = go 0
      where
        go :: Data.Mod.Word.Mod P -> Int -> Data.Mod.Word.Mod P
        go !acc 0 = acc
        go acc n = go (acc + 2 Data.Mod.Word.^% n) (n - 1)
    {-# INLINE powerNModWord #-}

#if defined(MIN_VERSION_finite_field) || defined(MIN_VERSION_modular_arithmetic)
    measure :: (Eq (t P), Num (t P)) => String -> Proxy t -> Benchmark
    measure name p = bench name $ whnf (powerN p) lim
    {-# INLINE measure #-}

    powerN :: forall t. (Eq (t P), Num (t P)) => Proxy t -> Int -> t P
    powerN = const $ go 0
      where
        go :: t P -> Int -> t P
        go !acc 0 = acc
        go acc n = go (acc + 2 ^ n) (n - 1)
    {-# INLINE powerN #-}
#endif

#ifdef MIN_VERSION_modular
    powerNModular :: Int -> Numeric.Modular.Mod P
    powerNModular = go 0
      where
        go :: Numeric.Modular.Mod P -> Int -> Numeric.Modular.Mod P
        go acc@(forceModular -> !_) 0 = acc
        go acc n = go (acc + 2 ^ n) (n - 1)
    {-# INLINE powerNModular #-}
#endif

main :: IO ()
main = defaultMain
  [ benchSum
  , benchProduct
  , benchInversion
  , benchPower
  ]