1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
;;; haskell-lexeme.el --- haskell lexical tokens -*- coding: utf-8; lexical-binding: t -*-
;; Copyright (C) 2015 Gracjan Polak
;; This file is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;; This file is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with this program. If not, see <http://www.gnu.org/licenses/>.
;;; Commentary:
;;; Code:
(require 'rx)
(unless (category-docstring ?P)
(define-category ?P "Haskell symbol constituent characters")
(map-char-table
#'(lambda (key val)
(if (or
(and (consp key) (> (car key) 128))
(and (numberp key) (> key 128)))
(if (member val '(Pc Pd Po Sm Sc Sk So))
(modify-category-entry key ?P))))
unicode-category-table)
(dolist (key (string-to-list "!#$%&*+./<=>?@^|~\\-:"))
(modify-category-entry key ?P)))
(defconst haskell-lexeme-modid
"[[:upper:]][[:alnum:]'_]*"
"Regexp matching a valid Haskell module identifier.
Note that GHC accepts Unicode category UppercaseLetter as a first
character. Following letters are from Unicode categories
UppercaseLetter, LowercaseLetter, OtherLetter, TitlecaseLetter,
ModifierLetter, DecimalNumber, OtherNumber, backslash or
underscore.")
(defconst haskell-lexeme-id
"[[:alpha:]_][[:alnum:]'_]*"
"Regexp matching a valid Haskell identifier.
GHC accepts a string starting with any alphabetic character or
underscore followed by any alphanumeric character or underscore
or apostrophe.")
(defconst haskell-lexeme-sym
"\\cP+"
"Regexp matching a valid Haskell variable or constructor symbol.
GHC accepts a string of chars from the set
[:!#$%&*+./<=>?@^|~\\-] or Unicode category Symbol for chars with
codes larger than 128 only.")
(defconst haskell-lexeme-idsym-first-char
"\\(?:[[:alpha:]_]\\|\\cP\\)"
"Regexp matching first character of a qualified or unqualified
identifier or symbol.
Useful for `re-search-forward'.")
(defconst haskell-lexeme-modid-opt-prefix
(concat "\\(?:" haskell-lexeme-modid "\\.\\)*")
"Regexp matching a valid Haskell module prefix, potentially empty.
Module path prefix is separated by dots and finishes with a
dot. For path component syntax see `haskell-lexeme-modid'.")
(defconst haskell-lexeme-qid-or-qsym
(rx-to-string `(: (regexp ,haskell-lexeme-modid-opt-prefix)
(group (| (regexp ,haskell-lexeme-id) (regexp ,haskell-lexeme-sym)
))))
"Regexp matching a valid qualified identifier or symbol.
Note that (match-string 1) returns the unqualified part.")
(defun haskell-lexeme-looking-at-qidsym ()
"Non-nil when point is just in front of an optionally qualified
identifier or symbol.
Using this function is more efficient than matching against the
regexp `haskell-lexeme-qid-or-qsym'.
Returns:
\\='qid - if matched a qualified id: \\='Data.Map\\=' or \\='Map\\='
\\='qsym - if matched a qualified id: \\='Monad.>>=\\=' or \\='>>=\\='
\\='qprefix - if matched only modid prefix: \\='Data.\\='
After successful \\='qid or \\='qsym match (match-string 1) will return
the unqualified part (if any)."
(let ((begin (point))
(match-data-old (match-data t)))
(save-excursion
(while (looking-at (concat haskell-lexeme-modid "\\."))
(goto-char (match-end 0)))
(cond
((looking-at haskell-lexeme-id)
(let ((beg (match-beginning 0))
(end (match-end 0)))
;; check is MagicHash is present at the end of the token
(goto-char end)
(when (looking-at "#+")
(setq end (match-end 0)))
(set-match-data
(list begin end
beg end)))
'qid)
((looking-at haskell-lexeme-sym)
(set-match-data
(list begin (match-end 0)
(match-beginning 0) (match-end 0)))
'qsym)
((equal begin (point))
(set-match-data match-data-old)
nil)
(t
(set-match-data
(list begin (point)
nil nil))
'qprefix)))))
(defun haskell-lexeme-looking-at-backtick ()
"Non-nil when point is just in front of an identifier quoted with backticks.
When match is successful, match-data will contain:
(match-text 1) - opening backtick
(match-text 2) - whole qualified identifier
(match-text 3) - unqualified part of identifier
(match-text 4) - closing backtick"
(let ((match-data-old (match-data t))
first-backtick-start
last-backtick-start
qid-start
id-start
id-end
result)
(save-excursion
(when (looking-at "`")
(setq first-backtick-start (match-beginning 0))
(goto-char (match-end 0))
(forward-comment (buffer-size))
(when (haskell-lexeme-looking-at-qidsym)
(setq qid-start (match-beginning 0))
(setq id-start (match-beginning 1))
(setq id-end (match-end 1))
(goto-char (match-end 0))
(forward-comment (buffer-size))
(when (looking-at "`")
(setq last-backtick-start (match-beginning 0))
(set-match-data
(list
first-backtick-start (1+ last-backtick-start)
first-backtick-start (1+ first-backtick-start)
qid-start id-end
id-start id-end
last-backtick-start (1+ last-backtick-start)))
(setq result t)))))
(unless result
(set-match-data match-data-old))
result))
(defconst haskell-lexeme-qid
(rx-to-string `(: (regexp "'*")
(regexp ,haskell-lexeme-modid-opt-prefix)
(group (regexp ,haskell-lexeme-id))))
"Regexp matching a valid qualified identifier.
Note that (match-string 1) returns the unqualified part.")
(defconst haskell-lexeme-qsym
(rx-to-string `(: (regexp "'*")
(regexp ,haskell-lexeme-modid-opt-prefix)
(group (regexp ,haskell-lexeme-id))))
"Regexp matching a valid qualified symbol.
Note that (match-string 1) returns the unqualified part.")
(defconst haskell-lexeme-number
(rx (| (: (regexp "[0-9]+\\.[0-9]+") (opt (regexp "[eE][-+]?[0-9]+")))
(regexp "[0-9]+[eE][-+]?[0-9]+")
(regexp "0[xX][0-9a-fA-F]+")
(regexp "0[oO][0-7]+")
(regexp "[0-9]+")))
"Regexp matching a floating point, decimal, octal or hexadecimal number.
Note that negative sign char is not part of a number.")
(defconst haskell-lexeme-char-literal-inside
(rx (| (not (any "\n'\\"))
(: "\\"
(| "a" "b" "f" "n" "r" "t" "v" "\\" "\"" "'"
"NUL" "SOH" "STX" "ETX" "EOT" "ENQ" "ACK"
"BEL" "BS" "HT" "LF" "VT" "FF" "CR" "SO" "SI" "DLE"
"DC1" "DC2" "DC3" "DC4" "NAK" "SYN" "ETB" "CAN"
"EM" "SUB" "ESC" "FS" "GS" "RS" "US" "SP" "DEL"
(regexp "[0-9]+")
(: "x" (regexp "[0-9a-fA-F]+"))
(: "o" (regexp "[0-7]+"))
(: "^" (regexp "[]A-Z@^_\\[]"))))))
"Regexp matching an inside of a character literal.
Note that `haskell-lexeme-char-literal-inside' matches strictly
only escape sequences defined in Haskell Report.")
(defconst haskell-lexeme--char-literal-rx
(rx-to-string `(: (group "'")
(| (: (group (regexp "[[:alpha:]_:([]")) (group "'")) ; exactly one char
(: (group (| (regexp "\\\\[^\n][^'\n]*") ; allow quote just after first backslash
(regexp "[^[:alpha:]_:(['\n][^'\n]*")))
(| (group "'") "\n" (regexp "\\'"))))))
"Regexp matching a character literal lookalike.
Note that `haskell-lexeme--char-literal-rx' matches more than
Haskell Report specifies because we want to support also code
under edit.
Character literals end with a quote or a newline or end of
buffer.
Regexp has subgroup expressions:
(match-text 1) matches the opening quote.
(match-text 2) matches the inside of the character literal.
(match-text 3) matches the closing quote or an empty string
at the end of line or the end buffer.")
(defun haskell-lexeme-looking-at-char-literal ()
"Non-nil when point is at a char literal lookalike.
Note that this function matches more than Haskell Report
specifies because we want to support also code under edit.
Char literals end with a quote or an unescaped newline or end
of buffer.
After successful match:
(match-text 1) matches the opening quote.
(match-text 2) matches the inside of the char literla.
(match-text 3) matches the closing quote, or a closing
newline or is nil when at the end of the buffer."
(when (looking-at haskell-lexeme--char-literal-rx)
(set-match-data
(list (match-beginning 0) (match-end 0)
(match-beginning 1) (match-end 1)
(or (match-beginning 2) (match-beginning 4)) (or (match-end 2) (match-end 4))
(or (match-beginning 3) (match-beginning 5)) (or (match-end 3) (match-end 5))))
t))
(defconst haskell-lexeme-string-literal-inside-item
(rx (| (not (any "\n\"\\"))
(: "\\"
(| "a" "b" "f" "n" "r" "t" "v" "\\" "\"" "'" "&"
"NUL" "SOH" "STX" "ETX" "EOT" "ENQ" "ACK"
"BEL" "BS" "HT" "LF" "VT" "FF" "CR" "SO" "SI" "DLE"
"DC1" "DC2" "DC3" "DC4" "NAK" "SYN" "ETB" "CAN"
"EM" "SUB" "ESC" "FS" "GS" "RS" "US" "SP" "DEL"
(regexp "[0-9]+")
(: "x" (regexp "[0-9a-fA-F]+"))
(: "o" (regexp "[0-7]+"))
(: "^" (regexp "[]A-Z@^_\\[]"))
(regexp "[ \t\n\r\v\f]*\\\\")))))
"Regexp matching an item that is a single character or a single
escape sequence inside of a string literal.
Note that `haskell-lexeme-string-literal-inside-item' matches
strictly only escape sequences defined in Haskell Report.")
(defconst haskell-lexeme-string-literal
(rx (: (group "\"")
(group (* (| (regexp "\\\\[ \t\n\r\v\f]*\\\\")
(regexp "\\\\[ \t\n\r\v\f]+")
(regexp "\\\\[^ \t\n\r\v\f]")
(* (regexp "[^\"\n\\]")))))
(group (| "\"" (regexp "$") (regexp "\\\\?\\'")
))))
"Regexp matching a string literal lookalike.
Note that `haskell-lexeme-string-literal' matches more than
Haskell Report specifies because we want to support also code
under edit.
String literals end with double quote or unescaped newline or end
of buffer.
Regexp has subgroup expressions:
(match-text 1) matches the opening double quote.
(match-text 2) matches the inside of the string.
(match-text 3) matches the closing double quote or an empty string
at the end of line or the end buffer.")
(defun haskell-lexeme-looking-at-string-literal ()
"Non-nil when point is at a string literal lookalike.
Note that this function matches more than Haskell Report
specifies because we want to support also code under edit.
String literals end with double quote or unescaped newline or end
of buffer.
After successful match:
(match-text 1) matches the opening doublequote.
(match-text 2) matches the inside of the string.
(match-text 3) matches the closing quote, or a closing
newline or is nil when at the end of the buffer."
(when (looking-at "\"")
(save-excursion
(let ((begin (point)))
(goto-char (match-end 0))
(let (finish)
(while (and (not finish)
(re-search-forward "[\"\n\\]" nil 'goto-eob))
(cond
((equal (match-string 0) "\\")
(if (looking-at "[ \t\n\r\v\f]+\\\\?")
(goto-char (match-end 0))
(goto-char (1+ (point)))))
((equal (match-string 0) "\"")
(set-match-data
(list begin (match-end 0)
begin (1+ begin)
(1+ begin) (match-beginning 0)
(match-beginning 0) (match-end 0)))
(setq finish t))
((equal (match-string 0) "\n")
(set-match-data
(list begin (match-beginning 0)
begin (1+ begin)
(1+ begin) (match-beginning 0)
nil nil))
(setq finish t))))
(unless finish
;; string closed by end of buffer
(set-match-data
(list begin (point)
begin (1+ begin)
(1+ begin) (point)
nil nil))))))
;; there was a match
t))
(defun haskell-lexeme-looking-at-quasi-quote-literal ()
"Non-nil when point is just in front of Template Haskell
quaisquote literal.
Quasi quotes start with \\='[xxx|\\=' or \\='[$xxx|\\=' sequence and end with
\\='|]\\='. The \\='xxx\\=' is a quoter name. There is no escaping mechanism
provided for the ending sequence.
Regexp has subgroup expressions:
(match-text 1) matches the quoter name (without $ sign if present).
(match-text 2) matches the opening vertical bar.
(match-text 3) matches the inside of the quoted string.
(match-text 4) matches the closing vertical bar
or nil if at the end of the buffer.
Note that this function excludes \\='e\\=', \\='t\\=', \\='d'\\=, \\='p\\='
as quoter names according to Template Haskell specification."
(let ((match-data-old (match-data t)))
(if (and
(looking-at (rx-to-string `(: "[" (optional "$")
(regexp ,haskell-lexeme-modid-opt-prefix)
(group (regexp ,haskell-lexeme-id))
(group "|"))))
(equal (haskell-lexeme-classify-by-first-char (char-after (match-beginning 1)))
'varid)
(not (member (match-string 1) '("e" "t" "d" "p"))))
(save-excursion
;; note that quasi quote syntax does not have any escaping
;; mechanism and if not closed it will span to the end of buffer
(goto-char (match-end 0))
(let ((match-data (match-data t))
(match-data-2 (and (re-search-forward "|]" nil t)
(match-data t))))
(if match-data-2
(set-match-data
(list
(nth 0 match-data) (nth 1 match-data-2) ;; whole match
(nth 2 match-data) (nth 3 match-data) ;; quoter name
(nth 4 match-data) (nth 5 match-data) ;; opening bar
(nth 5 match-data) (nth 0 match-data-2) ;; inner string
(nth 0 match-data-2) (1+ (nth 0 match-data-2)))) ;; closing bar
(set-match-data
(list
(nth 0 match-data) (point-max) ;; whole match
(nth 2 match-data) (nth 3 match-data) ;; quoter name
(nth 4 match-data) (nth 5 match-data) ;; opening bar
(nth 5 match-data) (point-max) ;; inner string
nil nil)) ;; closing bar
))
t)
;; restore old match data if not matched
(set-match-data match-data-old)
nil)))
(defun haskell-lexeme-classify-by-first-char (char)
"Classify token by CHAR.
CHAR is a chararacter that is assumed to be the first character
of a token."
(let ((category (get-char-code-property (or char ?\ ) 'general-category)))
(cond
((or (member char '(?! ?# ?$ ?% ?& ?* ?+ ?. ?/ ?< ?= ?> ?? ?@ ?^ ?| ?~ ?\\ ?-))
(and (> char 127)
(member category '(Pc Pd Po Sm Sc Sk So))))
'varsym)
((equal char ?:)
'consym)
((equal char ?\')
'char)
((equal char ?\")
'string)
((member category '(Lu Lt))
'conid)
((or (equal char ?_)
(member category '(Ll Lo)))
'varid)
((and (>= char ?0) (<= char ?9))
'number)
((member char '(?\] ?\[ ?\( ?\) ?\{ ?\} ?\` ?\, ?\;))
'special))))
(defun haskell-lexeme-looking-at-token (&rest flags)
"Like `looking-at' but understands Haskell lexemes.
Moves point forward over whitespace. Returns a symbol describing
type of Haskell token recognized. Use `match-string',
`match-beginning' and `match-end' with argument 0 to query match
result.
Possible results are:
- \\='special: for chars [](){}`,;
- \\='comment: for single line comments
- \\='nested-comment: for multiline comments
- \\='qsymid: for qualified identifiers or symbols
- \\='string: for strings literals
- \\='char: for char literals
- \\='number: for decimal, float, hexadecimal and octal number literals
- \\='template-haskell-quote: for a string of apostrophes for template
haskell
- \\='template-haskell-quasi-quote: for a string of apostrophes for template
haskell
Note that for qualified symbols (match-string 1) returns the
unqualified identifier or symbol. Further qualification for
symbol or identifier can be done with:
(haskell-lexeme-classify-by-first-char (char-after (match-beginning 1)))
See `haskell-lexeme-classify-by-first-char' for details."
(while
;; Due to how unterminated strings terminate at newline, some
;; newlines have syntax set to generic string delimeter. We want
;; those to be treated as whitespace anyway
(or
(> (skip-syntax-forward "-") 0)
(and (not (member 'newline flags))
(> (skip-chars-forward "\n") 0))))
(let
((case-fold-search nil)
(point (point)))
(or
(and
(equal (string-to-syntax "<")
(get-char-property (point) 'syntax-table))
(progn
(set-match-data (list point (line-end-position)))
'literate-comment))
(and (looking-at "\n")
'newline)
(and (looking-at "{-")
(save-excursion
(forward-comment 1)
(set-match-data (list point (point)))
'nested-comment))
(and (haskell-lexeme-looking-at-char-literal)
'char)
(and (haskell-lexeme-looking-at-string-literal)
'string)
(and (looking-at "[][(){}`,;]")
(if (haskell-lexeme-looking-at-quasi-quote-literal)
'template-haskell-quasi-quote
'special))
(and (haskell-lexeme-looking-at-qidsym)
(if (save-match-data
(string-match "\\`---*\\'" (match-string-no-properties 0)))
(progn
(set-match-data (list point (line-end-position)))
'comment)
'qsymid))
(and (looking-at haskell-lexeme-number)
'number)
(and (looking-at "'+")
'template-haskell-quote)
(and (looking-at ".")
'illegal))))
(provide 'haskell-lexeme)
;;; haskell-lexeme.el ends here
|