1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
{-# LANGUAGE FlexibleContexts, BangPatterns #-}
module Main (main) where
import Data.Int
import Data.List
import Data.Word
import qualified Data.IntMap as IM
import Data.Array
import Control.Monad.ST
import Control.Monad.Memo
import Control.Monad.Memo.Class
import Control.Monad.Memo.Vector.Unsafe
import Control.Monad.Memo.Vector.Expandable
import Criterion.Main
-- Fibonacci numbers
--------------------
{-# INLINE fibm #-}
fibm :: (Eq k, Num k, Num v, MonadMemo k v m) => k -> m v
fibm 0 = return 0
fibm 1 = return 1
fibm n = do
f1 <- memo fibm (n - 1)
f2 <- memo fibm (n - 2)
return (f1+f2)
fibM :: Int -> Word
fibM = startEvalMemo . fibm
fibIM :: Int -> Word
fibIM n = evalMemoState (fibm n) IM.empty
fibIOA :: Int -> IO Word
fibIOA n = evalArrayMemo (fibm n) (0,n)
fibIOUA :: Int -> IO Word
fibIOUA n = evalUArrayMemo (fibm n) (0,n)
fibSTA :: Int -> Word
fibSTA n = runST $ evalArrayMemo (fibm n) (0,n)
fibSTUA :: Int -> Word
fibSTUA n = runST $ evalUArrayMemo (fibm n) (0,n)
fibIOV :: Int -> IO Word
fibIOV n = evalVectorMemo (fibm n) (n+1)
fibIOUV :: Int -> IO Word
fibIOUV n = evalUVectorMemo (fibm n) (n+1)
fibSTV :: Int -> Word
fibSTV n = runST $ evalVectorMemo (fibm n) (n+1)
fibSTUV :: Int -> Word
fibSTUV n = runST $ evalUVectorMemo (fibm n) (n+1)
fibIOVU :: Int -> IO Word
fibIOVU n = unsafeEvalVectorMemo (fibm n) (n+1)
fibIOUVU :: Int -> IO Word
fibIOUVU n = unsafeEvalUVectorMemo (fibm n) (n+1)
fibSTVU :: Int -> Word
fibSTVU n = runST $ unsafeEvalVectorMemo (fibm n) (n+1)
fibSTUVU :: Int -> Word
fibSTUVU n = runST $ unsafeEvalUVectorMemo (fibm n) (n+1)
fibIOVE :: Int -> IO Word
fibIOVE n = startEvalVectorMemo (fibm n)
fibIOUVE :: Int -> IO Word
fibIOUVE n = startEvalUVectorMemo (fibm n)
fibSTVE :: Int -> Word
fibSTVE n = runST $ startEvalVectorMemo (fibm n)
fibSTUVE :: Int -> Word
fibSTUVE n = runST $ startEvalUVectorMemo (fibm n)
-- 0-1 Knapsack problem
-----------------------
{-# INLINE knap #-}
knap :: MonadMemo (Int, Int) Int m => [Int] -> [Int] -> Int -> m Int
knap ws vs = m (l-1)
where
l = length ws
wa = listArray (0,l-1) ws
va = listArray (0,l-1) vs
{-# INLINE m #-}
m 0 _ = return 0
m !i !w
| wa ! i > w = for2 memo m (i-1) w
| otherwise = do
!m1 <- for2 memo m (i-1) w
!m2 <- for2 memo m (i-1) (w - wa ! i)
return (m1 `max` (m2 + va ! i))
knapM :: [Int] -> [Int] -> Int -> Int
knapM ws vs w = startEvalMemo (knap ws vs w)
knapSTA :: [Int] -> [Int] -> Int -> Int
knapSTA ws vs w = runST $ evalArrayMemo (knap ws vs w) ((0,0), ((length ws),w))
knapSTUA :: [Int] -> [Int] -> Int -> Int
knapSTUA ws vs w = runST $ evalUArrayMemo (knap ws vs w) ((0,0), ((length ws),w))
knapIOA :: [Int] -> [Int] -> Int -> IO Int
knapIOA ws vs w = evalArrayMemo (knap ws vs w) ((0,0), ((length ws),w))
knapIOUA :: [Int] -> [Int] -> Int -> IO Int
knapIOUA ws vs w = evalUArrayMemo (knap ws vs w) ((0,0), ((length ws),w))
-- Longest common subsequence
-----------------------------
{-# INLINE lcsm2 #-}
lcsm2 :: MonadMemo (Int,Int) Int m => [Int] -> [Int] -> m Int
lcsm2 as bs = lcs la lb
where
la = length as
lb = length bs
aa = listArray (1,la) as
ba = listArray (1,lb) bs
{-# INLINE lcs #-}
lcs 0 _ = return 0
lcs _ 0 = return 0
lcs ia ib
| (aa!ia) == (ba!ib) = succ `liftM` for2 memo lcs (ia-1) (ib-1)
| otherwise = do
!l1 <- for2 memo lcs (ia-1) ib
!l2 <- for2 memo lcs ia (ib-1)
return (l1 `max` l2)
lcsM :: [Int] -> [Int] -> Int
lcsM as bs = startEvalMemo (lcsm2 as bs)
lcsSTA :: [Int] -> [Int] -> Int
lcsSTA as bs = runST $ evalArrayMemo (lcsm2 as bs) ((0,0), (length as, length bs))
lcsSTUA :: [Int] -> [Int] -> Int
lcsSTUA as bs = runST $ evalUArrayMemo (lcsm2 as bs) ((0,0), (length as, length bs))
{-# INLINE lcsm #-}
lcsm :: MonadMemo Int Int m => [Int] -> [Int] -> m Int
lcsm as bs = lcs la lb
where
la = genericLength as
lb = genericLength bs
aa = listArray (1,la) as
ba = listArray (1,lb) bs
{-# INLINE lcs #-}
lcs 0 _ = return 0
lcs _ 0 = return 0
lcs ia ib
| (aa!ia) == (ba!ib) = succ `liftM` mlcs (ia-1) (ib-1)
| otherwise = do
l1 <- mlcs (ia-1) ib
l2 <- mlcs ia (ib-1)
return (l1 `max` l2)
mlcs ai bi =
memo (\abi -> uncurry lcs $! abi `quotRem` lb) (ai*lb + bi)
lcsIM :: [Int] -> [Int] -> Int
lcsIM as bs = evalMemoState (lcsm as bs) IM.empty
lcsSTUV :: [Int] -> [Int] -> Int
lcsSTUV as bs = runST $ evalUVectorMemo (lcsm as bs) ((length as + 1) * (length bs + 1))
lcsSTUVE :: [Int] -> [Int] -> Int
lcsSTUVE as bs = runST $ startEvalUVectorMemo (lcsm as bs)
-- | Hofstadter Female and Male sequences
-- Mutually recursive memoized functions
gof :: (MonadTrans t, MonadCache Int Int m, MonadCache Int Int (t m)) => Int -> t m Int
gof 0 = return 1
gof i = do
fs <- memol0 gof (i-1)
ms <- memol1 gom fs
return (i - ms)
gom :: (MonadTrans t, MonadCache Int Int m, MonadCache Int Int (t m)) => Int -> t m Int
gom 0 = return 0
gom i = do
ms <- memol1 gom (i-1)
fs <- memol0 gof ms
return (i - fs)
fM :: Int -> Int
fM = startEvalMemo . startEvalMemoT . gof
fSTA :: Int -> Int
fSTA n = runST $ (`evalArrayMemo`(0,n)) . (`evalArrayMemo`(0,n)) . gof $ n
fSTAU :: Int -> Int
fSTAU n = runST $ (`evalUArrayMemo`(0,n)) . (`evalUArrayMemo`(0,n)) . gof $ n
fSTV :: Int -> Int
fSTV n = runST $ (`evalVectorMemo`(n+1)) . (`evalVectorMemo`(n+1)) . gof $ n
fSTVU :: Int -> Int
fSTVU n = runST $ (`evalUVectorMemo`(n+1)) . (`evalUVectorMemo`(n+1)) . gof $ n
fSTVUU :: Int -> Int
fSTVUU n = runST $ (`unsafeEvalUVectorMemo`(n+1)) . (`unsafeEvalUVectorMemo`(n+1)) . gof $ n
main :: IO ()
main = defaultMainWith defaultConfig [
bgroup "fib" [
bgroup "pure" [
bench "Map" $ whnf fibM n
, bench "IntMap" $ whnf fibIM n
]
, bgroup "ST" [
bench "Array" $ whnf fibSTA n
, bench "UArray" $ whnf fibSTUA n
, bench "Vector" $ whnf fibSTV n
, bench "UVector" $ whnf fibSTUV n
, bench "Vector unsafe" $ whnf fibSTVU n
, bench "UVector unsafe" $ whnf fibSTUVU n
, bench "Vector exp" $ whnf fibSTVE n
, bench "UVector exp" $ whnf fibSTUVE n
]
, bgroup "IO" [
bench "Array" $ whnfIO (fibIOA n)
, bench "UArray" $ whnfIO (fibIOUA n)
, bench "Vector" $ whnfIO (fibIOV n)
, bench "UVector" $ whnfIO (fibIOUV n)
, bench "Vector unsafe" $ whnfIO (fibIOVU n)
, bench "UVector unsafe" $ whnfIO (fibIOUVU n)
, bench "Vector exp" $ whnfIO (fibIOVE n)
, bench "UVector exp" $ whnfIO (fibIOUVE n)
]
]
, bgroup "knapsack" [
bgroup "pure" [
bench "Map" $ whnf (knapM ws vs) w
]
, bgroup "ST" [
bench "Array" $ whnf (knapSTA ws vs) w
, bench "UArray" $ whnf (knapSTUA ws vs) w
]
, bgroup "IO" [
bench "Array" $ whnfIO (knapIOA ws vs w)
, bench "UArray" $ whnfIO (knapIOUA ws vs w)
]
]
, bgroup "LCS" [
bgroup "pure" [
bench "Map" $ whnf (lcsM as) bs
, bench "IntMap" $ whnf (lcsIM as) bs
]
, bgroup "ST" [
bench "Array" $ whnf (lcsSTA as) bs
, bench "UArray" $ whnf (lcsSTUA as) bs
, bench "UVector exp" $ whnf (lcsSTUVE as) bs
, bench "UVector" $ whnf (lcsSTUV as) bs
]
]
, bgroup "Hofstadter" [
bgroup "pure" [
bench "Map" $ whnf fM fn
]
, bgroup "ST" [
bench "Array" $ whnf fSTA fn
, bench "UArray" $ whnf fSTAU fn
, bench "Vector" $ whnf fSTV fn
, bench "UVector" $ whnf fSTVU fn
, bench "UVector unsafe" $ whnf fSTVUU fn
]
]
]
where
-- fib arg
n = 100000
-- knapsac args
ws = [1..200]
vs = [1..200]
w = 800
-- LCS args
as = [1..400]
bs = [100,102..800]
-- Hofstadter
fn = 100000
|