1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
{- |
Module : Sample.Memo
Copyright : (c) Eduard Sergeev 2011
License : BSD-style (see the file LICENSE)
Maintainer : eduard.sergeev@gmail.com
Stability : experimental
Portability : non-portable (multi-param classes, functional dependencies)
Some basic examples of 'monad-memo' usage
-}
{-# LANGUAGE FlexibleContexts #-}
module Example.Basic
(
-- * Memoized Fibonacci number function
fibm,
evalFibm,
runFibm,
-- * Combining ListT and MemoT transformers
-- | Original sample is taken from: \"Monadic Memoization Mixins\" by Daniel Brown and William R. Cook <http://www.cs.utexas.edu/~wcook/Drafts/2006/MemoMixins.pdf>
-- *** Non-memoized original definition
Tree(..),
fringe,
unfringe,
-- *** Memoized definition
unfringem,
evalUnfringem,
-- * Mutualy recursive function definitions
-- | Original sample is taken from: \"Monadic Memoization Mixins\" by Daniel Brown and William R. Cook <http://www.cs.utexas.edu/~wcook/Drafts/2006/MemoMixins.pdf>
-- *** Non-memoized original definition
f, g,
-- *** Memoized definition
MemoF,
MemoG,
MemoFG,
fm, gm,
evalFm,
evalGm,
-- * Fibonacci with mutual recursive addition
MemoFib,
MemoBoo,
MemoFB,
boo,
fibm2,
evalFibM2,
-- * Fibonacci with `Memo` and `Writer`
fibmw,
evalFibmw,
-- * Fibonacci with MonadMemo and MonadCont
fibmc,
evalFibmc,
-- * Tribonacci with constant factor through Reader plus memoization via Memo
fibmr,
evalFibmr,
-- * Ackerman function
ack,
ackm,
evalAckm,
-- * Levensthein distance
editDistance,
editDistancem,
-- * Travelling salesman problem
evalTsp,
evalTspSTU,
-- * Different MonadCache for the same monadic function
-- ** `Data.IntMap`-based
evalFibmIM,
-- ** `ArrayCache`-based
evalFibmSTA,
evalFibmIOA,
runFibmIOA,
evalFibmIOUA,
runFibmIOUA,
evalFibmSTUA,
runFibmSTUA,
-- ** `VectorCache`-based
evalFibmSTV,
evalFibmSTUV,
evalFibmIOV,
evalFibmIOUV
) where
import Control.Monad.Identity
import Control.Monad.List
import Control.Monad.Cont
import Control.Monad.Reader
import Control.Monad.Writer
import Control.Monad.ST
import qualified Data.Map as M
import qualified Data.IntMap as IM
import Data.Array.ST
import Data.Array.Unboxed
import qualified Data.Vector as V
import qualified Data.Vector.Unboxed as UV
import Control.Applicative
import Debug.Trace
import Data.Array.MArray
import Data.Array.IO
import Control.Monad.Memo
import Control.Monad.Memo.Vector.Expandable as EV
-- infix form
fibm' :: (Num n, Ord n) => n -> Memo n n n
fibm' 0 = return 0
fibm' 1 = return 1
fibm' n = memo fibm' (n-1) `mp` memo fibm' (n-2)
where mp = liftM2 (+)
-- applicative form
fibm'' :: (Num n, Ord n) => n -> Memo n n n
fibm'' 0 = return 0
fibm'' 1 = return 1
fibm'' n = (+) <$> memo fibm'' (n-1) <*> memo fibm'' (n-2)
--
data Tree a = Leaf !a | Fork !(Tree a) !(Tree a) deriving (Show,Eq)
fringe :: Tree a -> [a]
fringe (Leaf a) = [a]
fringe (Fork t u) = fringe t ++ fringe u
partitions as = [ splitAt n as | n <- [1..length as - 1 ]]
-- | Non-memoized version (Uses ListT monad - returns a list of 'Tree')
unfringe :: (Show t) => [t] -> [Tree t]
unfringe [a] = show [a] `trace` [Leaf a]
unfringe as = show as `trace` do
(l,k) <- partitions as
t <- unfringe l
u <- unfringe k
return (Fork t u)
-- | Mixes memoization with ListT monad:
-- memoizes the result as list of 'Tree' (e.g. @k :: [t]@, @v :: [Tree t]@)
unfringem :: (Ord t, Show t) => [t] -> ListT (Memo [t] [Tree t]) (Tree t)
unfringem [a] = show [a] `trace` return (Leaf a)
unfringem as = show as `trace` do
(l,k) <- ListT $ return (partitions as)
t <- memo unfringem l
u <- memo unfringem k
return (Fork t u)
evalUnfringem :: (Ord t, Show t) => [t] -> [Tree t]
evalUnfringem = startEvalMemo . runListT . unfringem
-- | 'f' depends on 'g'
f :: Int -> (Int,String)
f 0 = (1,"+")
f n = (g(n,fst(f (n-1))),"-" ++ snd(f (n-1)))
-- | 'g' depends on 'f'
g :: (Int, Int) -> Int
g (0, m) = m + 1
g (n,m) = fst(f (n-1))-g((n-1),m)
-- | Memo-cache for 'fm'
type MemoF = MemoT Int (Int,String)
-- | Memo-cache for 'gm'
type MemoG = MemoT (Int,Int) Int
-- | Combined stack of caches (transformers)
-- Stacks two 'MemoT' transformers in one monad to be used in both 'gm' and 'fm' monadic functions
type MemoFG = MemoF (MemoG Identity)
fm :: Int -> MemoFG (Int,String)
fm 0 = return (1,"+")
fm n = do
fn <- memol0 fm (n-1)
gn <- memol1 gm ((n-1) , fst fn)
return (gn , "-" ++ snd fn)
gm :: (Int,Int) -> MemoFG Int
gm (0,m) = return (m+1)
gm (n,m) = do
fn <- memol0 fm (n-1)
gn <- memol1 gm ((n-1),m)
return $ fst fn - gn
evalAll = startEvalMemo . startEvalMemoT
-- | Function to run 'fm' computation
evalFm :: Int -> (Int, String)
evalFm = evalAll . fm
-- | Function to run 'gm' computation
evalGm :: (Int,Int) -> Int
evalGm = evalAll . gm
fm2 :: Int -> MemoFG (Int,String)
fm2 0 = return (1,"+")
fm2 n = do
fn <- memol0 fm2 (n-1)
gn <- for2 memol1 gm2 (n-1) (fst fn)
return (gn , "-" ++ snd fn)
-- | Same as @gm@ but in curried form
gm2 :: Int -> Int -> MemoFG Int
gm2 0 m = return (m+1)
gm2 n m = do
fn <- memol0 fm2 (n-1)
gn <- for2 memol1 gm2 (n-1) m
return $ fst fn - gn
evalFm2 :: Int -> (Int, String)
evalFm2 = evalAll . fm2
evalGm2 :: Int -> Int -> Int
evalGm2 n m = evalAll $ gm2 n m
--
type MemoFib = MemoT Integer Integer
type MemoBoo = MemoT Double String
type MemoFB = MemoFib (MemoBoo Identity)
boo :: Double -> MemoFB String
boo 0 = "boo: 0" `trace` return ""
boo n = ("boo: " ++ show n) `trace` do
n1 <- boo `memol1` (n-1)
fn <- fibm2 `memol0` floor (n-1)
return (show fn ++ n1)
fibm2 :: Integer -> MemoFB Integer
fibm2 0 = "fib: 0" `trace` return 0
fibm2 1 = "fib: 1" `trace` return 1
fibm2 n = ("fib: " ++ show n) `trace` do
l <- boo `memol1` fromInteger n
f1 <- fibm2 `memol0` (n-1)
f2 <- fibm2 `memol0` (n-2)
return (f1 + f2 + floor (read l))
evalFibM2 :: Integer -> Integer
evalFibM2 = startEvalMemo . startEvalMemoT . fibm2
-- | Plus MonadWriter
fibmw 0 = "fib: 0" `trace` tell "0" >> return 0
fibmw 1 = "fib: 1" `trace` tell "1" >> return 1
fibmw n = ("fib: " ++ show n) `trace` do
f1 <- fibmw (n-1)
f2 <- fibmw (n-2)
tell $ show n
return (f1+f2)
evalFibmw :: Integer -> (Integer, String)
evalFibmw = startEvalMemo . runWriterT . fibmw
t1 n = startEvalMemo . runWriterT $ fibmw n >> fibmw 1
t2 n = runWriter $ fibmw n >> fibmw 1
runFibmw n = startRunMemo . runWriterT $ fibmw n >> fibmw 1
evalFibmwSTA n = runST $ evalArrayMemo (runWriterT (fibmw n)) (0,n)
evalFibmwSTV n = runST $ evalVectorMemo (runWriterT (fibmw n)) (n+1)
runFibmwST :: Integer -> ((Integer,String), Array Integer (Maybe (Integer,String)))
runFibmwST n = runST $ do
(a,arr) <- runArrayMemo (runWriterT (fibmw n)) (0,n)
iarr <- freeze arr
return (a,iarr)
evalFibmwIO :: Integer -> IO (Integer, String)
evalFibmwIO n = evalArrayMemo (runWriterT (fibmw n)) (0,n)
-- | Can also be defined with polymorphic monad classes
-- MonadCont here
fibmc :: (Eq k, Num k, Show k, Num n, MonadCont m, MonadMemo k n m) => k -> m n
fibmc 0 = "fib: 0" `trace` return 0
fibmc 1 = "fib: 1" `trace` return 1
fibmc n = ("fib: " ++ show n) `trace` do
f1 <- memo fibmc (n-1)
f2 <- callCC $ \ break -> do
if n == 4 then break 42 else memo fibmc (n-2)
return (f1+f2)
evalFibmc :: Integer -> Integer
evalFibmc = startEvalMemo . (`runContT`return) . fibmc
runFibmc = startRunMemo . (`runContT`return) . fibmc
evalFibmcIO :: Integer -> IO Integer
evalFibmcIO n = (`evalArrayMemo`(0,n)) . (`runContT`return) . fibmc $ n
evalFibmcST :: Integer -> Integer
evalFibmcST n = runST $ (`evalArrayMemo`(0,n)) $ (`runContT`return) $ fibmc n
fibmr :: (Eq k, Num k, Show k, Num n, MonadMemo k n m, MonadReader n m) => k -> m n
fibmr 0 = "fib: 0" `trace` return 0
fibmr 1 = "fib: 1" `trace` return 1
fibmr 2 = "fib: 2" `trace` return 1
fibmr n = ("fib: " ++ show n) `trace` do
p1 <- ask
p2 <- local (const p1) $ memo fibmr (n-2)
f1 <- memo fibmr (n-1)
f2 <- memo fibmr (n-2)
return (p1+f1+f2+p2)
evalFibmr :: Integer -> Integer -> Integer
evalFibmr r = startEvalMemo . (`runReaderT` r) . fibmr
runFibmr r = startRunMemo . (`runReaderT` r) . fibmr
fibi 0 = print 0 >> return 0
fibi 1 = print 1 >> return 1
fibi n = do
n1 <- fibi (n-1)
n2 <- fibi (n-2)
let r = n1+n2
print r >> return r
fibmi 0 = print 0 >> return 0
fibmi 1 = print 1 >> return 1
fibmi n = do
n1 <- memo fibmi (n-1)
n2 <- memo fibmi (n-2)
let r = n1+n2
print r >> return r
-- | Ackerman function
ack :: (Eq n, Num n) => n -> n -> n
ack 0 n = n+1
ack m 0 = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))
ackm :: (Num n, Ord n, MonadMemo (n, n) n m) => n -> n -> m n
ackm 0 n = return (n+1)
ackm m 0 = for2 memo ackm (m-1) 1
ackm m n = do
n1 <- for2 memo ackm m (n-1)
for2 memo ackm (m-1) n1
evalAckm :: (Num n, Ord n) => n -> n -> n
evalAckm n m = startEvalMemo $ ackm n m
runAckm n m = startRunMemo $ ackm n m
evalAckmST :: Int -> Int -> Int
evalAckmST n m = runST $ evalUArrayMemo (ackm n m) ((0,0),(4,100000))
-- | Levensthein distance - recursive definition
editDistance [] ys = length ys
editDistance xs [] = length xs
editDistance (x:xs) (y:ys)
| x == y = editDistance xs ys
| otherwise = minimum [
1 + editDistance xs (y:ys),
1 + editDistance (x:xs) ys,
1 + editDistance xs ys]
-- | Levensthein distance - with memoization
editDistancem [] ys = return $ length ys
editDistancem xs [] = return $ length xs
editDistancem (x:xs) (y:ys)
| x == y = for2 memo editDistancem xs ys
| otherwise = ((+1) . minimum) <$> sequence [
for2 memo editDistancem xs (y:ys),
for2 memo editDistancem (x:xs) ys,
for2 memo editDistancem xs ys]
runEditDistancem xs ys = startEvalMemo $ editDistancem xs ys
-- | Travelling salesman problem
tsp gph mp t ss
| ss == (mp ! t) = return (gph ! (1,t))
| otherwise = do
krs <- mapM (\k -> for2 memo (tsp gph mp) k ss' >>= \r -> return (k,r)) (elms ss')
return $ minimum [ r + gph ! (k,t) | (k,r) <- krs]
where
ss' = ss - (mp ! t)
elms ss = go 1 ss
where
go b 1 = [b]
go b ss =
case ss `quotRem` 2 of
(q,1) -> b : go (b+1) q
(q,0) -> go (b+1) q
calcTsp dim = do
rs <- mapM (\k -> for2 memo (tsp gph mp) k (ss-1)) [2..n]
return $ minimum [ r + gph ! (k,1) | (r,k) <- zip rs [2..n]]
where
n = dim^2
cities = [(x*dim+y+1, (fromIntegral x, fromIntegral y))
| x <- [0..dim-1], y <- [0..dim-1]]
dists = [((c1,c2), sqrt ((x1-x2)^2 + (y1-y2)^2))
| (c1,(x1,y1)) <- cities, (c2,(x2,y2)) <- cities]
gph = array ((1,1),(n,n)) dists :: UArray (Int,Int) Float
mp = array (1,n) [(i,2^(i-1)) | i <- [1..n]] :: UArray Int Int
ss = 2^n-1
evalTsp = startEvalMemo . calcTsp
evalTspSTU dim = runST $ evalUArrayMemo (calcTsp dim) ((1,1),(n,2^n-1))
where n = dim^2
evalTspIOU :: Int -> IO Float
evalTspIOU dim = evalUArrayMemo (calcTsp dim) ((1,1),(n,2^n-1))
where n = dim^2
-- | Different `MonadCache` implementations
-- The same monadic funtion can be called using different MonadeCache implementation
fibm :: (Eq k, Num k, Num n, MonadMemo k n m) => k -> m n
fibm 0 = return 0
fibm 1 = return 1
fibm n = do
n1 <- memo fibm (n-1)
n2 <- memo fibm (n-2)
return (n1+n2)
evalFibm :: Integer -> Integer
evalFibm = startEvalMemo . fibm
runFibm :: Integer -> (Integer, M.Map Integer Integer)
runFibm = startRunMemo . fibm
evalFibmIM :: Int -> Int
evalFibmIM n = evalMemoState (fibm n) IM.empty
evalFibmSTA :: Integer -> Integer
evalFibmSTA n = runST $ evalArrayMemo (fibm n) (0,n)
runFibmSTA :: Integer -> (Integer, Array Integer (Maybe Integer))
runFibmSTA n = runST $ do
(a,arr) <- runArrayMemo (fibm n) (0,n)
iarr <- freeze arr
return (a, iarr)
evalFibmIOA :: Integer -> IO Integer
evalFibmIOA n = evalArrayMemo (fibm n) (0,n)
runFibmIOA :: Integer -> IO (Integer, Array Integer (Maybe Integer))
runFibmIOA n = do
(r, arr) <- runArrayMemo (fibm n) (0,n)
iarr <- freeze arr
return (r, iarr)
evalFibmIOUA :: Int -> IO Int
evalFibmIOUA n = evalUArrayMemo (fibm n) (0,n)
runFibmIOUA :: Int -> IO (Int, UArray Int Int)
runFibmIOUA n = do
(r, arr) <- runUArrayMemo (fibm n) (0,n)
iarr <- freeze arr
return (r, iarr)
evalFibmSTUA :: Int -> Int
evalFibmSTUA n = runST $ evalUArrayMemo (fibm n) (0,n)
runFibmSTUA :: Int -> (Int, UArray Int Int)
runFibmSTUA n = runST $ do
(a,arr) <- runUArrayMemo (fibm n) (0,n)
iarr <- freeze arr
return (a,iarr)
evalFibmSTV :: Int -> Integer
evalFibmSTV n = runST $ evalVectorMemo (fibm n) (n+1)
evalFibmIOV :: Int -> IO Integer
evalFibmIOV n = evalVectorMemo (fibm n) (n+1)
evalFibmSTUV :: Int -> Int
evalFibmSTUV n = runST $ evalUVectorMemo (fibm n) (n+1)
runFibmSTUV :: Int -> (Int, UV.Vector Int)
runFibmSTUV n = runST $ do
(a,vec) <- runUVectorMemo (fibm n) (n+1)
ivec <- UV.freeze vec
return (a,ivec)
evalFibmIOUV :: Int -> IO Int
evalFibmIOUV n = evalUVectorMemo (fibm n) (n+1)
runFibmIOUV :: Int -> IO (Int, UV.Vector Int)
runFibmIOUV n = do
(a, vec) <- runUVectorMemo (fibm n) (n+1)
ivec <- UV.freeze vec
return (a, ivec)
evalFibmSTEV :: Int -> Integer
evalFibmSTEV n = runST $ EV.startEvalVectorMemo (fibm n)
evalFibmIOEV :: Int -> IO Integer
evalFibmIOEV n = EV.startEvalVectorMemo (fibm n)
evalFibmSTEUV :: Int -> Int
evalFibmSTEUV n = runST $ EV.startEvalUVectorMemo (fibm n)
runFibmSTEUV :: Int -> (Int, UV.Vector Int)
runFibmSTEUV n = runST $ do
(a,vec) <- EV.startRunUVectorMemo (fibm n)
ivec <- UV.freeze vec
return (a,ivec)
evalFibmIOEUV :: Int -> IO Int
evalFibmIOEUV n = EV.startEvalUVectorMemo (fibm n)
runFibmIOEUV :: Int -> IO (Int, UV.Vector Int)
runFibmIOEUV n = do
(a, vec) <- EV.startRunUVectorMemo (fibm n)
ivec <- UV.freeze vec
return (a, ivec)
|