File: Basic.hs

package info (click to toggle)
haskell-monad-memo 0.5.4-3
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 224 kB
  • sloc: haskell: 2,159; makefile: 6
file content (555 lines) | stat: -rw-r--r-- 14,430 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
{- |
Module      :  Sample.Memo
Copyright   :  (c) Eduard Sergeev 2011
License     :  BSD-style (see the file LICENSE)

Maintainer  :  eduard.sergeev@gmail.com
Stability   :  experimental
Portability :  non-portable (multi-param classes, functional dependencies)

Some basic examples of 'monad-memo' usage

-}

{-# LANGUAGE FlexibleContexts #-}

module Example.Basic
    (
         -- * Memoized Fibonacci number function
         fibm,
         evalFibm,
         runFibm,

         -- * Combining ListT and MemoT transformers 
         -- | Original sample is taken from: \"Monadic Memoization Mixins\" by Daniel Brown and William R. Cook <http://www.cs.utexas.edu/~wcook/Drafts/2006/MemoMixins.pdf>

         -- ***    Non-memoized original definition
         Tree(..),
         fringe,
         unfringe,

         -- ***    Memoized definition
         unfringem,
         evalUnfringem,

         -- * Mutualy recursive function definitions
         -- | Original sample is taken from: \"Monadic Memoization Mixins\" by Daniel Brown and William R. Cook <http://www.cs.utexas.edu/~wcook/Drafts/2006/MemoMixins.pdf>

         -- ***    Non-memoized original definition
         f, g,

         -- ***    Memoized definition
         MemoF,
         MemoG,
         MemoFG,
         fm, gm,
         evalFm,
         evalGm,
                
         -- * Fibonacci with mutual recursive addition
         MemoFib,
         MemoBoo,
         MemoFB,
         boo,
         fibm2,
         evalFibM2,

         -- * Fibonacci with `Memo` and `Writer`
         fibmw,
         evalFibmw,

         -- * Fibonacci with MonadMemo and MonadCont
         fibmc,
         evalFibmc,

         -- * Tribonacci with constant factor through Reader plus memoization via Memo
         fibmr,
         evalFibmr,

         -- * Ackerman function
         ack,
         ackm,
         evalAckm,

         -- * Levensthein distance 
         editDistance,
         editDistancem,

         -- * Travelling salesman problem
         evalTsp,
         evalTspSTU,

         -- * Different MonadCache for the same monadic function
         -- ** `Data.IntMap`-based
         evalFibmIM,
         -- ** `ArrayCache`-based
         evalFibmSTA,
         evalFibmIOA,
         runFibmIOA,
         evalFibmIOUA,
         runFibmIOUA,
         evalFibmSTUA,
         runFibmSTUA,
         -- ** `VectorCache`-based
         evalFibmSTV,
         evalFibmSTUV,
         evalFibmIOV,
         evalFibmIOUV

) where

import Control.Monad.Identity
import Control.Monad.List
import Control.Monad.Cont
import Control.Monad.Reader
import Control.Monad.Writer
import Control.Monad.ST
import qualified Data.Map as M
import qualified Data.IntMap as IM
import Data.Array.ST
import Data.Array.Unboxed
import qualified Data.Vector as V
import qualified Data.Vector.Unboxed as UV

import Control.Applicative

import Debug.Trace
import Data.Array.MArray
import Data.Array.IO

import Control.Monad.Memo
import Control.Monad.Memo.Vector.Expandable as EV




-- infix form
fibm' :: (Num n, Ord n) => n -> Memo n n n
fibm' 0 = return 0
fibm' 1 = return 1
fibm' n = memo fibm' (n-1) `mp` memo fibm' (n-2)
    where mp = liftM2 (+)

-- applicative form
fibm'' :: (Num n, Ord n) => n -> Memo n n n
fibm'' 0 = return 0
fibm'' 1 = return 1
fibm'' n = (+) <$> memo fibm'' (n-1) <*> memo fibm'' (n-2)


--
data Tree a = Leaf !a | Fork !(Tree a) !(Tree a) deriving (Show,Eq)

fringe :: Tree a -> [a]
fringe (Leaf a) = [a]
fringe (Fork t u) = fringe t ++ fringe u

partitions as = [ splitAt n as | n <- [1..length as - 1 ]]

-- | Non-memoized version (Uses ListT monad - returns a list of 'Tree')
unfringe ::  (Show t) => [t] -> [Tree t]
unfringe [a] =  show [a] `trace` [Leaf a]
unfringe as  =  show as `trace` do
  (l,k) <- partitions as
  t <- unfringe l
  u <- unfringe k
  return (Fork t u)


-- | Mixes memoization with ListT monad:
-- memoizes the result as list of 'Tree' (e.g. @k :: [t]@, @v :: [Tree t]@)
unfringem :: (Ord t, Show t) => [t] -> ListT (Memo [t] [Tree t]) (Tree t)
unfringem [a] = show [a] `trace` return (Leaf a)
unfringem as = show as `trace` do
  (l,k) <- ListT $ return (partitions as)
  t <- memo unfringem l
  u <- memo unfringem k
  return (Fork t u)

evalUnfringem :: (Ord t, Show t) => [t] -> [Tree t]
evalUnfringem = startEvalMemo . runListT . unfringem


-- | 'f' depends on 'g'
f :: Int -> (Int,String)
f 0 = (1,"+")
f n = (g(n,fst(f (n-1))),"-" ++ snd(f (n-1)))

-- | 'g' depends on 'f'
g :: (Int, Int) -> Int
g (0, m)  = m + 1
g (n,m) = fst(f (n-1))-g((n-1),m)

-- | Memo-cache for 'fm'
type MemoF = MemoT Int (Int,String)
-- | Memo-cache for 'gm'
type MemoG = MemoT (Int,Int) Int

-- | Combined stack of caches (transformers)
-- Stacks two 'MemoT' transformers in one monad to be used in both 'gm' and 'fm' monadic functions
type MemoFG = MemoF (MemoG Identity)

fm :: Int -> MemoFG (Int,String)
fm 0 = return (1,"+")
fm n = do
  fn <- memol0 fm (n-1)
  gn <- memol1 gm ((n-1) , fst fn)
  return (gn , "-" ++ snd fn)

gm :: (Int,Int) -> MemoFG Int
gm (0,m) = return (m+1) 
gm (n,m) = do
  fn <- memol0 fm (n-1)
  gn <- memol1 gm ((n-1),m)
  return $ fst fn - gn

evalAll = startEvalMemo . startEvalMemoT

-- | Function to run 'fm' computation
evalFm :: Int -> (Int, String)
evalFm = evalAll . fm

-- | Function to run 'gm' computation
evalGm :: (Int,Int) -> Int
evalGm = evalAll . gm


fm2 :: Int -> MemoFG (Int,String)
fm2 0 = return (1,"+")
fm2 n = do
  fn <- memol0 fm2 (n-1)
  gn <- for2 memol1 gm2 (n-1) (fst fn)
  return (gn , "-" ++ snd fn)

-- | Same as @gm@ but in curried form
gm2 :: Int -> Int -> MemoFG Int
gm2 0 m = return (m+1) 
gm2 n m = do
  fn <- memol0 fm2 (n-1)
  gn <- for2 memol1 gm2 (n-1) m
  return $ fst fn - gn


evalFm2 :: Int -> (Int, String)
evalFm2 = evalAll . fm2

evalGm2 :: Int -> Int -> Int
evalGm2 n m = evalAll $ gm2 n m





--
type MemoFib = MemoT Integer Integer
type MemoBoo = MemoT Double String
type MemoFB = MemoFib (MemoBoo Identity)

boo :: Double -> MemoFB String
boo 0 = "boo: 0" `trace` return ""
boo n = ("boo: " ++ show n) `trace` do
  n1 <- boo `memol1` (n-1)
  fn <- fibm2 `memol0` floor (n-1)
  return (show fn ++ n1)

fibm2 :: Integer -> MemoFB Integer 
fibm2 0 = "fib: 0" `trace` return 0
fibm2 1 = "fib: 1" `trace` return 1
fibm2 n = ("fib: " ++ show n) `trace` do
  l <- boo `memol1` fromInteger n
  f1 <- fibm2 `memol0` (n-1)
  f2 <- fibm2 `memol0` (n-2)
  return (f1 + f2 + floor (read l))

evalFibM2 :: Integer -> Integer
evalFibM2 = startEvalMemo . startEvalMemoT . fibm2




-- | Plus MonadWriter
fibmw 0 = "fib: 0" `trace` tell "0" >> return 0
fibmw 1 = "fib: 1" `trace` tell "1" >> return 1
fibmw n = ("fib: " ++ show n) `trace` do
  f1 <-  fibmw (n-1)
  f2 <-  fibmw (n-2)
  tell $ show n
  return (f1+f2)


evalFibmw :: Integer -> (Integer, String)
evalFibmw = startEvalMemo . runWriterT . fibmw

t1 n = startEvalMemo . runWriterT $ fibmw n >> fibmw 1 
t2 n = runWriter $ fibmw n >> fibmw 1 

runFibmw n = startRunMemo . runWriterT $ fibmw n >> fibmw 1

evalFibmwSTA n = runST $ evalArrayMemo (runWriterT (fibmw n)) (0,n)

evalFibmwSTV n = runST $ evalVectorMemo (runWriterT (fibmw n)) (n+1)

runFibmwST :: Integer -> ((Integer,String), Array Integer (Maybe (Integer,String)))
runFibmwST n = runST $ do
   (a,arr) <- runArrayMemo (runWriterT (fibmw n)) (0,n)
   iarr <- freeze arr
   return (a,iarr)

evalFibmwIO :: Integer -> IO (Integer, String)
evalFibmwIO n = evalArrayMemo (runWriterT (fibmw n)) (0,n)


-- | Can also be defined with polymorphic monad classes
-- MonadCont here
fibmc :: (Eq k, Num k, Show k, Num n, MonadCont m, MonadMemo k n m) => k -> m n
fibmc 0 = "fib: 0" `trace` return 0
fibmc 1 = "fib: 1" `trace` return 1
fibmc n = ("fib: " ++ show n) `trace` do
  f1 <- memo fibmc (n-1)
  f2 <- callCC $ \ break -> do
          if n == 4 then break 42 else memo fibmc (n-2)
  return (f1+f2)

evalFibmc :: Integer -> Integer
evalFibmc = startEvalMemo . (`runContT`return) . fibmc

runFibmc = startRunMemo . (`runContT`return) . fibmc

evalFibmcIO :: Integer -> IO Integer
evalFibmcIO n = (`evalArrayMemo`(0,n)) . (`runContT`return) . fibmc $ n

evalFibmcST :: Integer -> Integer
evalFibmcST n = runST $ (`evalArrayMemo`(0,n)) $ (`runContT`return) $ fibmc n


fibmr :: (Eq k, Num k, Show k, Num n, MonadMemo k n m, MonadReader n m) => k -> m n
fibmr 0 = "fib: 0" `trace` return 0
fibmr 1 = "fib: 1" `trace` return 1
fibmr 2 = "fib: 2" `trace` return 1
fibmr n = ("fib: " ++ show n) `trace` do
  p1 <- ask
  p2 <- local (const p1) $ memo fibmr (n-2)          
  f1 <- memo fibmr (n-1)
  f2 <- memo fibmr (n-2)
  return (p1+f1+f2+p2)

evalFibmr :: Integer -> Integer -> Integer
evalFibmr r = startEvalMemo . (`runReaderT` r) . fibmr

runFibmr r = startRunMemo . (`runReaderT` r) . fibmr



fibi 0 = print 0 >> return 0
fibi 1 = print 1 >> return 1
fibi n = do
  n1 <- fibi (n-1)
  n2 <- fibi (n-2)
  let r = n1+n2
  print r >> return r


fibmi 0 = print 0 >> return 0
fibmi 1 = print 1 >> return 1
fibmi n = do
  n1 <- memo fibmi (n-1)
  n2 <- memo fibmi (n-2)
  let r = n1+n2
  print r >> return r





-- | Ackerman function
ack :: (Eq n, Num n) => n -> n -> n
ack 0 n = n+1
ack m 0 = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))

ackm :: (Num n, Ord n, MonadMemo (n, n) n m) => n -> n -> m n
ackm 0 n = return (n+1)
ackm m 0 = for2 memo ackm (m-1) 1
ackm m n = do
  n1 <- for2 memo ackm m (n-1)
  for2 memo ackm (m-1) n1

evalAckm :: (Num n, Ord n) => n -> n -> n
evalAckm n m = startEvalMemo $ ackm n m

runAckm n m = startRunMemo $ ackm n m

evalAckmST :: Int -> Int -> Int
evalAckmST n m = runST $ evalUArrayMemo (ackm n m) ((0,0),(4,100000))


-- | Levensthein distance - recursive definition
editDistance [] ys = length ys
editDistance xs [] = length xs
editDistance (x:xs) (y:ys) 
  | x == y = editDistance xs ys
  | otherwise = minimum [
      1 + editDistance xs (y:ys),
      1 + editDistance (x:xs) ys,
      1 + editDistance xs ys]

-- | Levensthein distance - with memoization
editDistancem [] ys = return $ length ys
editDistancem xs [] = return $ length xs
editDistancem (x:xs) (y:ys) 
  | x == y = for2 memo editDistancem xs ys
  | otherwise = ((+1) . minimum) <$> sequence [
      for2 memo editDistancem xs (y:ys),
      for2 memo editDistancem (x:xs) ys,
      for2 memo editDistancem xs ys]

runEditDistancem xs ys = startEvalMemo $ editDistancem xs ys


-- | Travelling salesman problem
tsp gph mp t ss
    | ss == (mp ! t) = return (gph ! (1,t))
    | otherwise = do
  krs <- mapM (\k -> for2 memo (tsp gph mp) k ss' >>= \r -> return (k,r)) (elms ss')
  return $ minimum [ r + gph ! (k,t) | (k,r) <- krs]
   where
     ss' = ss - (mp ! t)

elms ss = go 1 ss
    where
      go b 1 = [b]
      go b ss =
          case ss `quotRem` 2 of
            (q,1) -> b : go (b+1) q
            (q,0) -> go (b+1) q

calcTsp dim =  do
  rs <- mapM (\k -> for2 memo (tsp gph mp) k (ss-1)) [2..n]
  return $ minimum [ r + gph ! (k,1) | (r,k) <- zip rs [2..n]]
    where
      n = dim^2
      cities = [(x*dim+y+1, (fromIntegral x, fromIntegral y))
                    | x <- [0..dim-1], y <- [0..dim-1]]
      dists  = [((c1,c2), sqrt ((x1-x2)^2 + (y1-y2)^2))
                    | (c1,(x1,y1)) <- cities, (c2,(x2,y2)) <- cities]
      gph = array ((1,1),(n,n)) dists :: UArray (Int,Int) Float
      mp = array (1,n) [(i,2^(i-1)) | i <- [1..n]] :: UArray Int Int
      ss = 2^n-1

evalTsp = startEvalMemo . calcTsp

evalTspSTU dim = runST $ evalUArrayMemo (calcTsp dim) ((1,1),(n,2^n-1))
    where n = dim^2

evalTspIOU :: Int -> IO Float
evalTspIOU dim = evalUArrayMemo (calcTsp dim) ((1,1),(n,2^n-1))
    where n = dim^2


-- | Different `MonadCache` implementations
--   The same monadic funtion can be called using different MonadeCache implementation
 
fibm :: (Eq k, Num k, Num n, MonadMemo k n m) => k -> m n
fibm 0 = return 0
fibm 1 = return 1
fibm n = do
  n1 <- memo fibm (n-1)
  n2 <- memo fibm (n-2)
  return (n1+n2)


evalFibm :: Integer -> Integer
evalFibm = startEvalMemo . fibm

runFibm :: Integer -> (Integer, M.Map Integer Integer)
runFibm = startRunMemo . fibm

evalFibmIM :: Int -> Int
evalFibmIM n = evalMemoState (fibm n) IM.empty

evalFibmSTA :: Integer -> Integer
evalFibmSTA n = runST $ evalArrayMemo (fibm n) (0,n)

runFibmSTA :: Integer -> (Integer, Array Integer (Maybe Integer))
runFibmSTA n = runST $ do
  (a,arr) <- runArrayMemo (fibm n) (0,n)
  iarr <- freeze arr
  return (a, iarr)


evalFibmIOA :: Integer -> IO Integer
evalFibmIOA n = evalArrayMemo (fibm n) (0,n)

runFibmIOA :: Integer -> IO (Integer, Array Integer (Maybe Integer))
runFibmIOA n = do
  (r, arr) <- runArrayMemo (fibm n) (0,n)
  iarr <- freeze arr
  return (r, iarr)

evalFibmIOUA :: Int -> IO Int
evalFibmIOUA n = evalUArrayMemo (fibm n) (0,n) 

runFibmIOUA :: Int -> IO (Int, UArray Int Int)
runFibmIOUA n = do
  (r, arr) <- runUArrayMemo (fibm n) (0,n)
  iarr <- freeze arr
  return (r, iarr)

evalFibmSTUA :: Int -> Int
evalFibmSTUA n = runST $ evalUArrayMemo (fibm n) (0,n)

runFibmSTUA :: Int -> (Int, UArray Int Int)
runFibmSTUA n = runST $ do
    (a,arr) <- runUArrayMemo (fibm n) (0,n)
    iarr <- freeze arr
    return (a,iarr)


evalFibmSTV :: Int -> Integer
evalFibmSTV n = runST $ evalVectorMemo (fibm n) (n+1)

evalFibmIOV :: Int -> IO Integer
evalFibmIOV n = evalVectorMemo (fibm n) (n+1)

evalFibmSTUV :: Int -> Int
evalFibmSTUV n = runST $ evalUVectorMemo (fibm n) (n+1)

runFibmSTUV :: Int -> (Int, UV.Vector Int)
runFibmSTUV n = runST $ do
    (a,vec) <- runUVectorMemo (fibm n) (n+1)
    ivec <- UV.freeze vec
    return (a,ivec)

evalFibmIOUV :: Int -> IO Int
evalFibmIOUV n = evalUVectorMemo (fibm n) (n+1)

runFibmIOUV :: Int -> IO (Int, UV.Vector Int)
runFibmIOUV n = do
  (a, vec) <- runUVectorMemo (fibm n) (n+1)
  ivec <- UV.freeze vec
  return (a, ivec)


evalFibmSTEV :: Int -> Integer
evalFibmSTEV n = runST $ EV.startEvalVectorMemo (fibm n)

evalFibmIOEV :: Int -> IO Integer
evalFibmIOEV n = EV.startEvalVectorMemo (fibm n)

evalFibmSTEUV :: Int -> Int
evalFibmSTEUV n = runST $ EV.startEvalUVectorMemo (fibm n)

runFibmSTEUV :: Int -> (Int, UV.Vector Int)
runFibmSTEUV n = runST $ do
    (a,vec) <- EV.startRunUVectorMemo (fibm n)
    ivec <- UV.freeze vec
    return (a,ivec)

evalFibmIOEUV :: Int -> IO Int
evalFibmIOEUV n = EV.startEvalUVectorMemo (fibm n)

runFibmIOEUV :: Int -> IO (Int, UV.Vector Int)
runFibmIOEUV n = do
  (a, vec) <- EV.startRunUVectorMemo (fibm n)
  ivec <- UV.freeze vec
  return (a, ivec)