1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
{- | Implementation of monads that allow the computation
to 'Control.Monad.Prompt.prompt' for further input.
(c) 2008 Bertram Felgenhauer & Ryan Ingram
Released as open source under a 3 clause BSD license. See the LICENSE
file in the source code distribution for further information.
RecPromptT added by Cale Gibbard, contributed under the same license.
MonadPrompt monads allow you to pass some object of the prompt
type in, and get a result of the prompt's answer type out.
-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
module Control.Monad.Prompt (
MonadPrompt(..),
Prompt,
runPromptC,
runPrompt,
runPromptM,
RecPrompt,
unRecPrompt,
runRecPromptC,
runRecPrompt,
runRecPromptM,
PromptT,
runPromptT,
runPromptTM,
runPromptTM',
Lift(..),
unPromptT,
liftP,
RecPromptT,
unRecPromptT,
runRecPromptT
) where
import Control.Applicative (Applicative(..))
import Control.Monad (ap, liftM)
import Control.Monad.Trans (MonadTrans(..))
{- |You can construct a monad very simply with prompt, by putting
all of its effects as terms in a GADT, like the following example:
@
data PromptState s a where
Put :: s -> PromptState s ()
Get :: PromptState s s
@
You then use 'prompt' to access effects:
@
postIncrement :: MonadPrompt (PromptState Int) m => m Int
postIncrement =
do x <- prompt Get
prompt (Put (x+1))
return x
@
The advantage of Prompt over implementing effects directly:
1. Prompt is pure; it is only through the observation function
runPromptC that you can cause effects.
2. You don't have to worry about the monad laws; they are
correct by construction and you cannot break them.
3. You can implement several observation functions for the same
type. See, for example, <http://paste.lisp.org/display/53766>
where a guessing game is implemented with an IO observation
function for the user, and an AI observation function that
plays the game automatically.
In these ways Prompt is similar to Unimo, but bind and return
are inlined into the computation, whereas in Unimo they are
handled as a term calculus.
See <http://sneezy.cs.nott.ac.uk/fplunch/weblog/?p=89>
-}
class Monad m => MonadPrompt p m | m -> p where
prompt :: p a -> m a
{-
For any prompt p, Prompt p is an instance of MonadPrompt p.
-}
newtype Prompt p r = Prompt {
runP :: forall b . (r -> b) -> (forall a . p a -> (a -> b) -> b) -> b
}
instance Monad (Prompt p) where
return a = Prompt $ \done _ -> done a
f >>= g = Prompt $ \done prm -> runP f (\x -> runP (g x) done prm) prm
instance Functor (Prompt p) where
fmap = liftM
instance Applicative (Prompt p) where
pure = return
(<*>) = ap
instance MonadPrompt p (Prompt p) where
prompt p = Prompt $ \done prm -> prm p done
{- |'runPromptC' is the observation function for prompts. It takes
two functions as arguments:
1. @ret@ will be called with the final result of the computation,
to convert it to the answer type.
2. @prm@ will be called if there are any effects; it is passed
a prompt and a continuation function. prm can apply
the effect requested by the prompt and call the continuation.
In some cases prm can return the answer type directly; it
may be useful to abort the remainder of the computation, or
save off the continuation to be called later. There is a great
example of using this to implement a UI for peg solitaire in Bertram
Felgenhauer's post to Haskell-Cafe at
<http://www.haskell.org/pipermail/haskell-cafe/2008-January/038301.html>
-}
runPromptC :: forall p r b. -- prompt, computation result, answer type
(r -> b) -- ^ handler when there is no further computation
-> (forall a . p a -> (a -> b) -> b)
-- ^ handler for prompts
-> Prompt p r -- ^ a prompt-based computation
-> b -- ^ answer
runPromptC ret prm p = runP p ret prm
{- |'runPrompt' takes a way of converting prompts to an element in a pure
fashion and calculates the result of the prompt -}
runPrompt :: (forall a. p a -> a) -> Prompt p r -> r
runPrompt prm = runPromptC id (\p cont -> cont $ prm p)
{- |'runPromptM' is similar to 'runPrompt' but allows the computation to happen in any monad. -}
runPromptM :: Monad m => (forall a . p a -> m a) -> Prompt p r -> m r
runPromptM prm = runPromptC return (\p cont -> prm p >>= cont)
{- | 'RecPrompt' is for prompts which are dependent on the prompt monad.
For example, a 'MonadPlus' prompt:
@
data PromptPlus m a where
PromptZero :: PromptPlus m a
PromptPlus :: m a -> m a -> PromptPlus m a
instance MonadPlus (RecPrompt PromptPlus) where
mzero = prompt PromptZero
mplus x y = prompt (PromptPlus x y)
@
-}
newtype RecPrompt p r = RecPrompt { unRecPrompt :: Prompt (p (RecPrompt p)) r }
instance Monad (RecPrompt p) where
return = RecPrompt . return
m >>= f = RecPrompt $ unRecPrompt m >>= (unRecPrompt . f)
instance Functor (RecPrompt p) where
fmap = liftM
instance Applicative (RecPrompt p) where
pure = return
(<*>) = ap
instance MonadPrompt (p (RecPrompt p)) (RecPrompt p) where
prompt = RecPrompt . prompt
{- | Runs a recursive prompt computation. This is similar to 'runPromptC', but for recursive prompt types. -}
runRecPromptC :: forall p r b. -- prompt, computation result, answer type
(r -> b) -- ^ handler when there is no further computation
-> (forall a . p (RecPrompt p) a -> (a -> b) -> b)
-- ^ handler for prompts
-> RecPrompt p r -- ^ a prompt-based computation
-> b -- ^ answer
runRecPromptC ret prm = runPromptC ret prm . unRecPrompt
{- | Run a recursive prompt computation in a pure fashion, similar to 'runPrompt'. -}
runRecPrompt :: (forall a. p (RecPrompt p) a -> a) -> RecPrompt p r -> r
runRecPrompt prm = runPrompt prm . unRecPrompt
{- | Run a recursive prompt computation in an arbitrary monad, similar to 'runPromptM'. -}
runRecPromptM :: Monad m => (forall a . p (RecPrompt p) a -> m a) -> RecPrompt p r -> m r
runRecPromptM prm = runPromptM prm . unRecPrompt
{- | Prompt can also be used to define monad transformers.
You will notice the lack of a @Monad m@ constraint; this is allowed
because Prompt doesn't use the underlying monad at all; instead
the observation function (generally implemented via 'runPromptT')
will have the constraint.
-}
newtype PromptT p m a = PromptT { unPromptT :: Prompt (Lift p m) a }
{- | A higher-kinded Either, used in defining 'PromptT'. -}
data Lift p m a = Effect (p a) | Lift (m a)
instance Monad (PromptT p m) where
return = PromptT . return
m >>= f = PromptT $ unPromptT m >>= (unPromptT . f)
instance Functor (PromptT p m) where
fmap = liftM
instance Applicative (PromptT p m) where
pure = return
(<*>) = ap
instance MonadPrompt p (PromptT p m) where
prompt = PromptT . prompt . Effect
instance MonadTrans (PromptT p) where
lift = PromptT . prompt . Lift
{- | 'runPromptT' runs a prompt monad transformer. -}
runPromptT :: forall p m r b.
(r -> b) -- ^ handler when there is no further computation
-> (forall a . p a -> (a -> b) -> b)
-- ^ handler for prompts
-> (forall a . m a -> (a -> b) -> b)
-- ^ handler for lifted computations
-> PromptT p m r -- ^ a prompt-based computation
-> b -- ^ answer
runPromptT ret prm lft = runPromptC ret prm' . unPromptT where
prm' (Effect e) = prm e
prm' (Lift a) = lft a
{- | 'runPromptTM' is a useful variant of runPromptT when interpreting into another monad -}
runPromptTM :: forall p m r n. (Monad n)
=> (forall a. p a -> n a) -- ^ interpretation for prompts
-> (forall a. m a -> n a) -- ^ interpretation for lifted computations
-> PromptT p m r -- ^ a prompt-based computation
-> n r -- ^ resulting interpretation
runPromptTM prm lft = runPromptT return (\p k -> prm p >>= k) (\l k -> lft l >>= k)
{- | 'runPromptTM'' specialises runPromptTM further for the case that you're interpreting to the base monad by supplying the identity function as the interpretation
for lifted computations -}
runPromptTM' :: forall p m r. (Monad m)
=> (forall a. p a -> m a) -- ^ interpretation for prompts
-> PromptT p m r -- ^ a prompt-based computation
-> m r -- ^ resulting interpretation
runPromptTM' prm = runPromptTM prm id
{- | You can also lift any Prompt computation into a PromptT (or more generally, any appropriate MonadPrompt instance). This is the kind of place where the advantage of being able to use multiple observation functions on Prompt really shows. -}
liftP :: (MonadPrompt p m) => Prompt p r -> m r
liftP = runPromptM prompt
{- | A recursive variant of the prompt monad transformer. -}
newtype RecPromptT p m a =
RecPromptT { unRecPromptT :: Prompt (Lift (p (RecPromptT p m)) m) a }
instance Monad (RecPromptT p m) where
return = RecPromptT . return
m >>= f = RecPromptT $ unRecPromptT m >>= (unRecPromptT . f)
instance Functor (RecPromptT p m) where
fmap = liftM
instance Applicative (RecPromptT p m) where
pure = return
(<*>) = ap
instance MonadPrompt (p (RecPromptT p m)) (RecPromptT p m) where
prompt = RecPromptT . prompt . Effect
instance MonadTrans (RecPromptT p) where
lift = RecPromptT . prompt . Lift
{- | Run a recursive prompt monad transformer. -}
runRecPromptT :: forall p r b m.
(r -> b) -- ^ handler when there is no further computation
-> (forall a . p (RecPromptT p m) a -> (a -> b) -> b)
-- ^ handler for prompts
-> (forall a . m a -> (a -> b) -> b)
-- ^ handler for lifted computations
-> RecPromptT p m r -- ^ a prompt-based computation
-> b -- ^ answer
runRecPromptT ret prm lft = runPromptC ret prm' . unRecPromptT where
prm' (Effect e) = prm e
prm' (Lift a) = lft a
|