1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS -fno-warn-orphans #-}
{- |
Copyright : 2006-2007 Cale Gibbard, Russell O'Connor, Dan Doel, Remi Turk, Eric Kidd.
License : OtherLicense
Stability : experimental
Portability : non-portable (multi-parameter type classes, undecidable instances)
A random number generation monad. See
<http://www.haskell.org/haskellwiki/NewMonads/MonadRandom> for the original
version of this code.
The actual interface is defined by
'Control.Monad.Random.Class.MonadRandom'.
[Computation type:] Computations which consume random values.
[Binding strategy:] The computation proceeds in the same fashion as the
identity monad, but it carries a random number generator that may be
queried to generate random values.
[Useful for:] Monte Carlo algorithms and simulating random processes.
-}
module Control.Monad.Random (
module System.Random,
module Control.Monad.Random.Class,
evalRandT,
runRandT,
evalRand,
runRand,
evalRandIO,
fromList,
uniform,
Rand, RandT, -- but not the data constructors
-- * Special lift functions
liftRand,
liftRandT
-- * Example
-- $RandExample
) where
import Control.Applicative
import Control.Arrow
import Control.Monad ()
import Control.Monad.Cont
import Control.Monad.Error
import Control.Monad.Identity
import Control.Monad.Random.Class
import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Trans ()
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Maybe
import Control.Monad.Writer
import System.Random
-- | A monad transformer which adds a random number generator to an
-- existing monad.
newtype RandT g m a = RandT (StateT g m a)
deriving (Functor, Monad, MonadTrans, MonadIO, MonadFix, MonadReader r, MonadWriter w)
instance (Functor m,Monad m) => Applicative (RandT g m) where
pure = return
(<*>) = ap
liftState :: (MonadState s m) => (s -> (a,s)) -> m a
liftState t = do v <- get
let (x, v') = t v
put v'
return x
-- | Lift arbitrary action to RandT
liftRandT :: (Monad m, RandomGen g, Random a) =>
(g -> m (a, g)) -- ^ action returning value and new generator state
-> RandT g m a
liftRandT = RandT . StateT
-- | Lift arbitrary action to Rand
liftRand :: (RandomGen g, Random a) =>
(g -> (a, g)) -- ^ action returning value and new generator state
-> Rand g a
liftRand = Rand . RandT . liftState
instance (Monad m, RandomGen g) => MonadRandom (RandT g m) where
getRandom = RandT . liftState $ random
getRandoms = RandT . liftState $ first randoms . split
getRandomR (x,y) = RandT . liftState $ randomR (x,y)
getRandomRs (x,y) = RandT . liftState $
first (randomRs (x,y)) . split
instance (Monad m, RandomGen g) => MonadSplit g (RandT g m) where
getSplit = RandT . liftState $ split
-- | Evaluate a RandT computation using the generator @g@. Note that the
-- generator @g@ is not returned, so there's no way to recover the
-- updated version of @g@.
evalRandT :: (Monad m, RandomGen g) => RandT g m a -> g -> m a
evalRandT (RandT x) g = evalStateT x g
-- | Run a RandT computation using the generator @g@, returning the result and
-- the updated generator.
runRandT :: (Monad m, RandomGen g) => RandT g m a -> g -> m (a, g)
runRandT (RandT x) g = runStateT x g
-- | A basic random monad.
newtype Rand g a = Rand (RandT g Identity a)
deriving (Functor, Applicative, Monad, MonadRandom, MonadSplit g, MonadFix)
-- | Evaluate a random computation using the generator @g@. Note that the
-- generator @g@ is not returned, so there's no way to recover the
-- updated version of @g@.
evalRand :: (RandomGen g) => Rand g a -> g -> a
evalRand (Rand x) g = runIdentity (evalRandT x g)
-- | Run a random computation using the generator @g@, returning the result
-- and the updated generator.
runRand :: (RandomGen g) => Rand g a -> g -> (a, g)
runRand (Rand x) g = runIdentity (runRandT x g)
-- | Evaluate a random computation in the IO monad, splitting the global standard generator to get a new one for the computation.
evalRandIO :: Rand StdGen a -> IO a
evalRandIO x = fmap (evalRand x) newStdGen
-- | Sample a random value from a weighted list. The total weight of all
-- elements must not be 0.
fromList :: (MonadRandom m) => [(a,Rational)] -> m a
fromList [] = error "MonadRandom.fromList called with empty list"
fromList [(x,_)] = return x
fromList xs = do
-- TODO: Do we want to be able to use floats as weights?
-- TODO: Better error message if weights sum to 0.
let s = (fromRational (sum (map snd xs))) :: Double -- total weight
cs = scanl1 (\(_,q) (y,s') -> (y, s'+q)) xs -- cumulative weight
p <- liftM toRational $ getRandomR (0.0,s)
return . fst . head $ dropWhile (\(_,q) -> q < p) cs
-- | Sample a value from a uniform distribution of a list of elements.
uniform :: (MonadRandom m) => [a] -> m a
uniform = fromList . fmap (flip (,) 1)
instance (MonadRandom m) => MonadRandom (IdentityT m) where
getRandom = lift getRandom
getRandomR = lift . getRandomR
getRandoms = lift getRandoms
getRandomRs = lift . getRandomRs
instance (MonadRandom m) => MonadRandom (StateT s m) where
getRandom = lift getRandom
getRandomR = lift . getRandomR
getRandoms = lift getRandoms
getRandomRs = lift . getRandomRs
instance (MonadRandom m, Monoid w) => MonadRandom (WriterT w m) where
getRandom = lift getRandom
getRandomR = lift . getRandomR
getRandoms = lift getRandoms
getRandomRs = lift . getRandomRs
instance (MonadRandom m) => MonadRandom (ReaderT r m) where
getRandom = lift getRandom
getRandomR = lift . getRandomR
getRandoms = lift getRandoms
getRandomRs = lift . getRandomRs
instance (Error e, MonadRandom m) => MonadRandom (ErrorT e m) where
getRandom = lift getRandom
getRandomR = lift . getRandomR
getRandoms = lift getRandoms
getRandomRs = lift . getRandomRs
instance (MonadRandom m) => MonadRandom (MaybeT m) where
getRandom = lift getRandom
getRandomR = lift . getRandomR
getRandoms = lift getRandoms
getRandomRs = lift . getRandomRs
instance MonadRandom m => MonadRandom (ContT r m) where
getRandom = lift getRandom
getRandomR = lift . getRandomR
getRandoms = lift getRandoms
getRandomRs = lift . getRandomRs
instance (MonadSplit g m) => MonadSplit g (IdentityT m) where
getSplit = lift getSplit
instance (MonadSplit g m) => MonadSplit g (StateT s m) where
getSplit = lift getSplit
instance (MonadSplit g m, Monoid w) => MonadSplit g (WriterT w m) where
getSplit = lift getSplit
instance (MonadSplit g m) => MonadSplit g (ReaderT r m) where
getSplit = lift getSplit
instance (Error e, MonadSplit g m) => MonadSplit g (ErrorT e m) where
getSplit = lift getSplit
instance (MonadSplit g m) => MonadSplit g (MaybeT m) where
getSplit = lift getSplit
instance (MonadSplit g m) => MonadSplit g (ContT r m) where
getSplit = lift getSplit
instance (MonadState s m, RandomGen g) => MonadState s (RandT g m) where
get = lift get
put = lift . put
instance MonadRandom IO where
getRandom = randomIO
getRandomR = randomRIO
getRandoms = fmap randoms newStdGen
getRandomRs b = fmap (randomRs b) newStdGen
instance MonadSplit StdGen IO where
getSplit = newStdGen
{- $RandExample
The @die@ function simulates the roll of a die, picking a number between 1
and 6, inclusive, and returning it in the 'Rand' monad. Notice that this
code will work with any source of random numbers @g@.
>die :: (RandomGen g) => Rand g Int
>die = getRandomR (1,6)
The @dice@ function uses @replicate@ and @sequence@ to simulate the roll of
@n@ dice.
>dice :: (RandomGen g) => Int -> Rand g [Int]
>dice n = sequence (replicate n die)
To extract a value from the 'Rand' monad, we can can use 'evalRandIO'.
>main = do
> values <- evalRandIO (dice 2)
> putStrLn (show values)
-}
|