1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE Safe #-}
{-# LANGUAGE UndecidableInstances #-}
-- |
-- Module : Control.Monad.Random.Class
-- Copyright : (c) Brent Yorgey 2016
-- License : BSD3 (see LICENSE)
-- Maintainer : byorgey@gmail.com
--
-- The 'MonadRandom', 'MonadSplit', and 'MonadInterleave' classes.
--
-- * 'MonadRandom' abstracts over monads with the capability of
-- generating random values.
--
-- * 'MonadSplit' abstracts over random monads with the ability to get a
-- split generator state. It is not very useful but kept here for
-- backwards compatibility.
--
-- * 'MonadInterleave' abstracts over random monads supporting an
-- 'interleave' operation, which allows sequencing computations which do
-- not depend on each other's random generator state, by splitting the
-- generator between them.
--
-- This module also defines convenience functions for sampling from a
-- given collection of values, either uniformly or according to given
-- weights.
module Control.Monad.Random.Class (
-- * MonadRandom
MonadRandom (..),
-- * MonadSplit
MonadSplit (..),
-- * MonadInterleave
MonadInterleave (..),
-- * Sampling functions
fromList,
fromListMay,
uniform,
uniformMay,
weighted,
weightedMay,
) where
import Control.Monad
import Control.Monad.Trans.Class
import Control.Monad.Trans.Cont
import Control.Monad.Trans.Except
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Maybe
import qualified Control.Monad.Trans.RWS.Lazy as LazyRWS
import qualified Control.Monad.Trans.RWS.Strict as StrictRWS
import Control.Monad.Trans.Reader
import qualified Control.Monad.Trans.State.Lazy as LazyState
import qualified Control.Monad.Trans.State.Strict as StrictState
import qualified Control.Monad.Trans.Writer.Lazy as LazyWriter
import qualified Control.Monad.Trans.Writer.Strict as StrictWriter
import qualified Data.Foldable as F
import Data.Word (Word64)
import qualified System.Random as Random
#if MIN_VERSION_base(4,8,0)
#else
import Data.Monoid (Monoid)
#endif
------------------------------------------------------------
-- MonadRandom
------------------------------------------------------------
-- | With a source of random number supply in hand, the 'MonadRandom' class
-- allows the programmer to extract random values of a variety of types.
class Monad m => MonadRandom m where
-- | Takes a range /(lo,hi)/ and a random number generator
-- /g/, and returns a computation that returns a random value uniformly
-- distributed in the closed interval /[lo,hi]/, together with a new
-- generator. It is unspecified what happens if /lo>hi/. For continuous
-- types there is no requirement that the values /lo/ and /hi/ are ever
-- produced, but they may be, depending on the implementation and the
-- interval.
--
-- See 'System.Random.randomR' for details.
getRandomR :: Random.Random a => (a, a) -> m a
-- | The same as 'getRandomR', but using a default range determined by the type:
--
-- * For bounded types (instances of 'Bounded', such as 'Char'),
-- the range is normally the whole type.
--
-- * For fractional types, the range is normally the semi-closed interval
-- @[0,1)@.
--
-- * For 'Integer', the range is (arbitrarily) the range of 'Int'.
--
-- See 'System.Random.random' for details.
getRandom :: Random.Random a => m a
-- | Plural variant of 'getRandomR', producing an infinite list of
-- random values instead of returning a new generator.
--
-- See 'System.Random.randomRs' for details.
getRandomRs :: Random.Random a => (a, a) -> m [a]
-- | Plural variant of 'getRandom', producing an infinite list of
-- random values instead of returning a new generator.
--
-- See 'System.Random.randoms' for details.
getRandoms :: Random.Random a => m [a]
instance MonadRandom IO where
getRandomR = Random.randomRIO
getRandom = Random.randomIO
getRandomRs lohi = liftM (Random.randomRs lohi) Random.newStdGen
getRandoms = liftM Random.randoms Random.newStdGen
instance MonadRandom m => MonadRandom (ContT r m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
instance MonadRandom m => MonadRandom (ExceptT e m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
instance MonadRandom m => MonadRandom (IdentityT m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
instance MonadRandom m => MonadRandom (MaybeT m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
instance (Monoid w, MonadRandom m) => MonadRandom (LazyRWS.RWST r w s m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
instance (Monoid w, MonadRandom m) => MonadRandom (StrictRWS.RWST r w s m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
instance MonadRandom m => MonadRandom (ReaderT r m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
instance MonadRandom m => MonadRandom (LazyState.StateT s m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
instance MonadRandom m => MonadRandom (StrictState.StateT s m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
instance (MonadRandom m, Monoid w) => MonadRandom (LazyWriter.WriterT w m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
instance (MonadRandom m, Monoid w) => MonadRandom (StrictWriter.WriterT w m) where
getRandomR = lift . getRandomR
getRandom = lift getRandom
getRandomRs = lift . getRandomRs
getRandoms = lift getRandoms
------------------------------------------------------------
-- MonadSplit
------------------------------------------------------------
-- | The class 'MonadSplit' proivides a way to specify a random number
-- generator that can be split into two new generators.
--
-- This class is not very useful in practice: typically, one cannot
-- actually do anything with a generator. It remains here to avoid
-- breaking existing code unnecessarily. For a more practically
-- useful interface, see 'MonadInterleave'.
class Monad m => MonadSplit g m | m -> g where
-- | The 'getSplit' operation allows one to obtain two distinct random number
-- generators.
--
-- See 'System.Random.split' for details.
getSplit :: m g
instance MonadSplit Random.StdGen IO where
getSplit = Random.newStdGen
instance MonadSplit g m => MonadSplit g (ContT r m) where
getSplit = lift getSplit
instance MonadSplit g m => MonadSplit g (ExceptT e m) where
getSplit = lift getSplit
instance MonadSplit g m => MonadSplit g (IdentityT m) where
getSplit = lift getSplit
instance MonadSplit g m => MonadSplit g (MaybeT m) where
getSplit = lift getSplit
instance (Monoid w, MonadSplit g m) => MonadSplit g (LazyRWS.RWST r w s m) where
getSplit = lift getSplit
instance (Monoid w, MonadSplit g m) => MonadSplit g (StrictRWS.RWST r w s m) where
getSplit = lift getSplit
instance MonadSplit g m => MonadSplit g (ReaderT r m) where
getSplit = lift getSplit
instance MonadSplit g m => MonadSplit g (LazyState.StateT s m) where
getSplit = lift getSplit
instance MonadSplit g m => MonadSplit g (StrictState.StateT s m) where
getSplit = lift getSplit
instance (Monoid w, MonadSplit g m) => MonadSplit g (LazyWriter.WriterT w m) where
getSplit = lift getSplit
instance (Monoid w, MonadSplit g m) => MonadSplit g (StrictWriter.WriterT w m) where
getSplit = lift getSplit
------------------------------------------------------------
-- MonadInterleave
------------------------------------------------------------
-- | The class 'MonadInterleave' proivides a convenient interface atop
-- a 'split' operation on a random generator.
class MonadRandom m => MonadInterleave m where
-- | If @x :: m a@ is a computation in some random monad, then
-- @interleave x@ works by splitting the generator, running @x@
-- using one half, and using the other half as the final generator
-- state of @interleave x@ (replacing whatever the final generator
-- state otherwise would have been). This means that computation
-- needing random values which comes after @interleave x@ does not
-- necessarily depend on the computation of @x@. For example:
--
-- > >>> evalRandIO $ snd <$> ((,) <$> undefined <*> getRandom)
-- > *** Exception: Prelude.undefined
-- > >>> evalRandIO $ snd <$> ((,) <$> interleave undefined <*> getRandom)
-- > 6192322188769041625
--
-- This can be used, for example, to allow random computations to
-- run in parallel, or to create lazy infinite structures of
-- random values. In the example below, the infinite tree
-- @randTree@ cannot be evaluated lazily: even though it is cut
-- off at two levels deep by @hew 2@, the random value in the
-- right subtree still depends on generation of all the random
-- values in the (infinite) left subtree, even though they are
-- ultimately unneeded. Inserting a call to @interleave@, as in
-- @randTreeI@, solves the problem: the generator splits at each
-- @Node@, so random values in the left and right subtrees are
-- generated independently.
--
-- > data Tree = Leaf | Node Int Tree Tree deriving Show
-- >
-- > hew :: Int -> Tree -> Tree
-- > hew 0 _ = Leaf
-- > hew _ Leaf = Leaf
-- > hew n (Node x l r) = Node x (hew (n-1) l) (hew (n-1) r)
-- >
-- > randTree :: Rand StdGen Tree
-- > randTree = Node <$> getRandom <*> randTree <*> randTree
-- >
-- > randTreeI :: Rand StdGen Tree
-- > randTreeI = interleave $ Node <$> getRandom <*> randTreeI <*> randTreeI
--
-- > >>> hew 2 <$> evalRandIO randTree
-- > Node 2168685089479838995 (Node (-1040559818952481847) Leaf Leaf) (Node ^CInterrupted.
-- > >>> hew 2 <$> evalRandIO randTreeI
-- > Node 8243316398511136358 (Node 4139784028141790719 Leaf Leaf) (Node 4473998613878251948 Leaf Leaf)
interleave :: m a -> m a
instance MonadInterleave m => MonadInterleave (ContT r m) where
interleave = mapContT interleave
instance MonadInterleave m => MonadInterleave (ExceptT e m) where
interleave = mapExceptT interleave
instance MonadInterleave m => MonadInterleave (IdentityT m) where
interleave = mapIdentityT interleave
instance MonadInterleave m => MonadInterleave (MaybeT m) where
interleave = mapMaybeT interleave
instance (Monoid w, MonadInterleave m) => MonadInterleave (LazyRWS.RWST r w s m) where
interleave = LazyRWS.mapRWST interleave
instance (Monoid w, MonadInterleave m) => MonadInterleave (StrictRWS.RWST r w s m) where
interleave = StrictRWS.mapRWST interleave
instance MonadInterleave m => MonadInterleave (ReaderT r m) where
interleave = mapReaderT interleave
instance MonadInterleave m => MonadInterleave (LazyState.StateT s m) where
interleave = LazyState.mapStateT interleave
instance MonadInterleave m => MonadInterleave (StrictState.StateT s m) where
interleave = StrictState.mapStateT interleave
instance (Monoid w, MonadInterleave m) => MonadInterleave (LazyWriter.WriterT w m) where
interleave = LazyWriter.mapWriterT interleave
instance (Monoid w, MonadInterleave m) => MonadInterleave (StrictWriter.WriterT w m) where
interleave = StrictWriter.mapWriterT interleave
------------------------------------------------------------
-- Convenience samplers
------------------------------------------------------------
-- | Sample a random value from a weighted nonempty collection of
-- elements. Crashes with a call to @error@ if the collection is
-- empty or the total weight is zero.
weighted :: (F.Foldable t, MonadRandom m) => t (a, Rational) -> m a
weighted t = do
ma <- weightedMay t
case ma of
Nothing -> error "Control.Monad.Random.Class.weighted: empty collection, or total weight <= 0"
Just a -> return a
-- | Sample a random value from a weighted collection of elements.
-- Returns @Nothing@ if the collection is empty or the total weight is
-- zero.
weightedMay :: (F.Foldable t, MonadRandom m) => t (a, Rational) -> m (Maybe a)
weightedMay = fromListMay . F.toList
-- | Sample a random value from a weighted list. The list must be
-- non-empty and the total weight must be non-zero.
fromList :: MonadRandom m => [(a, Rational)] -> m a
fromList ws = do
ma <- fromListMay ws
case ma of
Nothing -> error "Control.Monad.Random.Class.fromList: empty list, or total weight = 0"
Just a -> return a
-- | Sample a random value from a weighted list. Return @Nothing@ if
-- the list is empty or the total weight is nonpositive.
fromListMay :: MonadRandom m => [(a, Rational)] -> m (Maybe a)
fromListMay xs = do
let s = sum (map snd xs)
cums = scanl1 (\ ~(_, q) ~(y, s') -> (y, s' + q)) xs
if s <= 0
then return Nothing
else do
-- Pick a Word64 value uniformly
w <- getRandom
-- w / maxBound gives a uniform Rational in the range [0,1].
-- Subtract from 1 to match the way uniform Double values are
-- generated, and hence match the old behavior of this function.
let p = s * (1 - toRational (w :: Word64) / toRational (maxBound :: Word64))
return . fmap fst . F.find ((>= p) . snd) $ cums
-- | Sample a value uniformly from a nonempty collection of elements.
uniform :: (F.Foldable t, MonadRandom m) => t a -> m a
uniform t = do
ma <- uniformMay t
case ma of
Nothing -> error "Control.Monad.Random.Class.uniform: empty collection"
Just a -> return a
-- | Sample a value uniformly from a collection of elements. Return
-- @Nothing@ if the collection is empty.
uniformMay :: (F.Foldable t, MonadRandom m) => t a -> m (Maybe a)
uniformMay = fromListMay . map (flip (,) 1) . F.toList
------------------------------------------------------------
-- The old implementation of `fromListMay`, for comparison. See
-- https://github.com/byorgey/MonadRandom/issues/53 and
-- https://byorgey.github.io/blog/posts/2024/10/14/MonadRandom-version-bump.html
_fromListMayOld :: MonadRandom m => [(a, Rational)] -> m (Maybe a)
_fromListMayOld xs = do
let s = fromRational (sum (map snd xs)) :: Double
cums = scanl1 (\ ~(_, q) ~(y, s') -> (y, s' + q)) xs
if s <= 0
then return Nothing
else do
p <- liftM toRational $ getRandomR (0, s)
return . fmap fst . F.find ((>= p) . snd) $ cums
|