1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{- |
Module : Control.Monad.Trans.Random.Lazy
Copyright : (c) Brent Yorgey 2016
License : BSD3 (see LICENSE)
Maintainer : byorgey@gmail.com
Stability : experimental
Portability : non-portable (multi-param classes, functional dependencies, undecidable instances)
Lazy random monads, passing a random number generator through a computation.
See below for examples.
For a strict version with the same interface, see
"Control.Monad.Trans.Random.Strict".
-}
module Control.Monad.Trans.Random.Lazy
( -- * The Rand monad transformer
Rand,
liftRand,
runRand,
evalRand,
execRand,
mapRand,
withRand,
evalRandIO,
-- * The RandT monad transformer
RandT,
liftRandT,
runRandT,
evalRandT,
execRandT,
mapRandT,
withRandT,
-- * Lifting other operations
liftCallCC,
liftCallCC',
liftCatch,
liftListen,
liftPass,
evalRandTIO,
-- * StatefulGen interface
RandGen(..),
withRandGen,
withRandGen_,
-- * Examples
-- ** Random monads
-- $examples
) where
import Control.Applicative ( Alternative )
import Control.Arrow (first)
import Control.Monad ( liftM, MonadPlus )
import Control.Monad.Cont.Class (MonadCont(..))
import Control.Monad.Error.Class ( MonadError(..) )
import qualified Control.Monad.Fail as Fail
import Control.Monad.Fix ( MonadFix )
import Control.Monad.IO.Class ( MonadIO(..) )
import Control.Monad.Primitive ( PrimMonad(..) )
import Control.Monad.Random.Class ( MonadInterleave(..), MonadSplit(..), MonadRandom(..) )
import Control.Monad.RWS.Class ( MonadState(..), MonadRWS, MonadReader, MonadWriter )
import Control.Monad.Signatures ( Listen, Pass, CallCC, Catch )
import Control.Monad.Trans.Class ( MonadTrans(..) )
import qualified Control.Monad.Trans.State.Lazy as LazyState
import Control.Monad.Trans.Random.Strict (RandGen(..))
import Data.Functor.Identity ( Identity(runIdentity) )
#if MIN_VERSION_random(1,2,0)
import System.Random.Stateful
#else
import System.Random
#endif
-- | A random monad parameterized by the type @g@ of the generator to carry.
--
-- The 'return' function leaves the generator unchanged, while '>>=' uses the
-- final generator of the first computation as the initial generator of the
-- second.
type Rand g = RandT g Identity
-- | Construct a random monad computation from a function.
-- (The inverse of 'runRand'.)
liftRand
:: (g -> (a, g))
-- ^ pure random transformer
-> Rand g a
-- ^ equivalent generator-passing computation
liftRand = RandT . state
-- | Unwrap a random monad computation as a function.
-- (The inverse of 'liftRand'.)
runRand
:: Rand g a
-- ^ generator-passing computation to execute
-> g
-- ^ initial generator
-> (a, g)
-- ^ return value and final generator
runRand t = runIdentity . runRandT t
-- | Evaluate a random computation with the given initial generator and return
-- the final value, discarding the final generator.
--
-- * @'evalRand' m s = fst ('runRand' m s)@
evalRand
:: Rand g a
-- ^ generator-passing computation to execute
-> g
-- ^ initial generator
-> a
-- ^ return value of the random computation
evalRand t = runIdentity . evalRandT t
-- | Evaluate a random computation with the given initial generator and return
-- the final generator, discarding the final value.
--
-- * @'execRand' m s = snd ('runRand' m s)@
execRand
:: Rand g a
-- ^ generator-passing computation to execute
-> g
-- ^ initial generator
-> g
-- ^ final generator
execRand t = runIdentity . execRandT t
-- | Map both the return value and final generator of a computation using the
-- given function.
--
-- * @'runRand' ('mapRand' f m) = f . 'runRand' m@
mapRand :: ((a, g) -> (b, g)) -> Rand g a -> Rand g b
mapRand f = mapRandT (liftM f)
-- | @'withRand' f m@ executes action @m@ on a generator modified by applying @f@.
--
-- * @'withRand' f m = 'modify' f >> m@
withRand :: (g -> g) -> Rand g a -> Rand g a
withRand = withRandT
-- | A random transformer monad parameterized by:
--
-- * @g@ - The generator.
--
-- * @m@ - The inner monad.
--
-- The 'return' function leaves the generator unchanged, while '>>=' uses the
-- final generator of the first computation as the initial generator of the
-- second.
newtype RandT g m a = RandT { unRandT :: LazyState.StateT g m a }
deriving (Functor, Applicative, Alternative, Monad, MonadPlus, MonadTrans, MonadIO, MonadFix, MonadReader r, MonadWriter w)
-- | Construct a random monad computation from an impure function.
-- (The inverse of 'runRandT'.)
liftRandT
:: (g -> m (a, g))
-- ^ impure random transformer
-> RandT g m a
-- ^ equivalent generator-passing computation
liftRandT = RandT . LazyState.StateT
-- | Unwrap a random monad computation as an impure function.
-- (The inverse of 'liftRandT'.)
runRandT
:: RandT g m a
-- ^ generator-passing computation to execute
-> g
-- ^ initial generator
-> m (a, g)
-- ^ return value and final generator
runRandT = LazyState.runStateT . unRandT
-- | Evaluate a random computation with the given initial generator and return
-- the final value, discarding the final generator.
--
-- * @'evalRandT' m g = liftM fst ('runRandT' m g)@
evalRandT :: (Monad m) => RandT g m a -> g -> m a
evalRandT = LazyState.evalStateT . unRandT
-- | Evaluate a random computation with the given initial generator and return
-- the final generator, discarding the final value.
--
-- * @'execRandT' m g = liftM snd ('runRandT' m g)@
execRandT :: (Monad m) => RandT g m a -> g -> m g
execRandT = LazyState.execStateT . unRandT
-- | Map both the return value and final generator of a computation using the
-- given function.
--
-- * @'runRandT' ('mapRandT' f m) = f . 'runRandT' m@
mapRandT :: (m (a, g) -> n (b, g)) -> RandT g m a -> RandT g n b
mapRandT f = RandT . LazyState.mapStateT f . unRandT
-- | @'withRandT' f m@ executes action @m@ on a generator modified by applying @f@.
--
-- * @'withRandT' f m = 'modify' f >> m@
withRandT :: (g -> g) -> RandT g m a -> RandT g m a
withRandT f = RandT . LazyState.withStateT f . unRandT
instance (MonadCont m) => MonadCont (RandT g m) where
callCC = liftCallCC' callCC
instance (MonadError e m) => MonadError e (RandT g m) where
throwError = lift . throwError
catchError = liftCatch catchError
instance (MonadReader r m, MonadWriter w m, MonadState s m) => MonadRWS r w s (RandT g m)
instance (RandomGen g, Monad m) => MonadRandom (RandT g m) where
getRandomR lohi = RandT . state $ randomR lohi
getRandom = RandT . state $ random
getRandomRs lohi = RandT . state $ first (randomRs lohi) . split
getRandoms = RandT . state $ first randoms . split
instance (RandomGen g, Monad m) => MonadSplit g (RandT g m) where
getSplit = RandT . state $ split
instance (Monad m, RandomGen g) => MonadInterleave (RandT g m) where
interleave (RandT m) = liftRandT $ \g -> case split g of
(gl, gr) -> liftM (\p -> (fst p, gr)) $ LazyState.runStateT m gl
instance (MonadState s m) => MonadState s (RandT g m) where
get = lift get
put = lift . put
instance PrimMonad m => PrimMonad (RandT s m) where
type PrimState (RandT s m) = PrimState m
primitive = lift . primitive
instance Fail.MonadFail m => Fail.MonadFail (RandT g m) where
fail = lift . Fail.fail
-- | Uniform lifting of a @callCC@ operation to the new monad.
-- This version rolls back to the original state on entering the
-- continuation.
liftCallCC :: CallCC m (a, g) (b, g) -> CallCC (RandT g m) a b
liftCallCC callCC_ f = RandT $ LazyState.liftCallCC callCC_ $ \c -> unRandT (f (RandT . c))
-- | In-situ lifting of a @callCC@ operation to the new monad.
-- This version uses the current state on entering the continuation.
-- It does not satisfy the uniformity property (see "Control.Monad.Signatures").
liftCallCC' :: CallCC m (a, g) (b, g) -> CallCC (RandT g m) a b
liftCallCC' callCC_ f = RandT $ LazyState.liftCallCC' callCC_ $ \c -> unRandT (f (RandT . c))
-- | Lift a @catchE@ operation to the new monad.
liftCatch :: Catch e m (a, g) -> Catch e (RandT g m) a
liftCatch catchE_ m f = RandT $ LazyState.liftCatch catchE_ (unRandT m) (unRandT . f)
-- | Lift a @listen@ operation to the new monad.
liftListen :: (Monad m) => Listen w m (a, g) -> Listen w (RandT g m) a
liftListen listen_ m = RandT $ LazyState.liftListen listen_ (unRandT m)
-- | Lift a @pass@ operation to the new monad.
liftPass :: (Monad m) => Pass w m (a, g) -> Pass w (RandT g m) a
liftPass pass_ m = RandT $ LazyState.liftPass pass_ (unRandT m)
-- | Evaluate a random computation in the `IO` monad, splitting the global
-- standard generator to get a new one for the computation.
evalRandIO :: Rand StdGen a -> IO a
evalRandIO t = liftM (evalRand t) newStdGen
-- | Evaluate a random computation that is embedded in the `IO` monad,
-- splitting the global standard generator to get a new one for the
-- computation.
evalRandTIO :: (MonadIO m) => RandT StdGen m a -> m a
evalRandTIO t = liftIO newStdGen >>= evalRandT t
#if MIN_VERSION_random(1,2,0)
-- |
--
-- @since 0.5.3
instance (Monad m, RandomGen g) => StatefulGen (RandGen g) (RandT g m) where
uniformWord32R r = applyRandT (genWord32R r)
uniformWord64R r = applyRandT (genWord64R r)
uniformWord8 = applyRandT genWord8
uniformWord16 = applyRandT genWord16
uniformWord32 = applyRandT genWord32
uniformWord64 = applyRandT genWord64
#if MIN_VERSION_random(1,3,0)
uniformByteArrayM pinned sz = applyRandT $ uniformByteArray pinned sz
#else
uniformShortByteString n = applyRandT (genShortByteString n)
#endif
-- |
--
-- @since 0.5.3
instance (Monad m, RandomGen g) => RandomGenM (RandGen g) g (RandT g m) where
applyRandomGenM = applyRandT
applyRandT :: Applicative m => (g -> (a, g)) -> RandGen g -> RandT g m a
applyRandT f _ = liftRandT (pure . f)
#endif
-- | A `RandT` runner that allows using it with `StatefulGen` restricted actions. Returns
-- the outcome of random computation and the new pseudo-random-number generator
--
-- >>> withRandGen (mkStdGen 2021) uniformM :: IO (Int, StdGen)
-- (6070831465987696718,StdGen {unStdGen = SMGen 4687568268719557181 4805600293067301895})
--
-- @since 0.5.3
withRandGen ::
g
-- ^ initial generator
-> (RandGen g -> RandT g m a)
-> m (a, g)
-- ^ return value and final generator
withRandGen g action = runRandT (action RandGen) g
-- | Same as `withRandGen`, but discards the resulting generator.
--
-- >>> withRandGen_ (mkStdGen 2021) uniformM :: IO Int
-- 6070831465987696718
--
-- @since 0.5.3
withRandGen_ ::
Monad m
=> g
-- ^ initial generator
-> (RandGen g -> RandT g m a)
-> m a
-- ^ return value and final generator
withRandGen_ g action = evalRandT (action RandGen) g
{- $examples
The @die@ function simulates the roll of a die, picking a number between 1
and 6, inclusive, and returning it in the 'Rand' monad transformer. Notice
that this code will work with any random number generator @g@.
> die :: (RandomGen g) => Rand g Int
> die = getRandomR (1, 6)
The @dice@ function uses @replicate@ and @sequence@ to simulate the roll of
@n@ dice.
> dice :: (RandomGen g) => Int -> Rand g [Int]
> dice n = sequence (replicate n die)
To extract a value from the 'Rand' monad transformer, we can use 'evalRandIO'.
> main = do
> values <- evalRandIO (dice 2)
> putStrLn (show values)
-}
|