1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
{-# LANGUAGE GADTs #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE PatternSynonyms #-}
module Main where
import Data.MonoTraversable
import Data.Containers
import Data.Sequences
import qualified Data.Sequence as Seq
import qualified Data.NonNull as NN
import Data.Monoid (mempty, mconcat, (<>))
import Data.Maybe (fromMaybe)
import qualified Data.List as List
import Test.Hspec
import Test.Hspec.QuickCheck
import Test.HUnit ((@?=))
import Test.QuickCheck hiding (NonEmptyList(..))
import Test.QuickCheck.Function (pattern Fn)
import qualified Test.QuickCheck.Modifiers as QCM
import Data.Text (Text)
import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import qualified Data.ByteString as S
import qualified Data.ByteString.Lazy as L
import qualified Data.Vector as V
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Storable as VS
import qualified Data.List.NonEmpty as NE
import qualified Data.Semigroup as SG
import qualified Data.Map as Map
import qualified Data.IntMap as IntMap
import qualified Data.HashMap.Strict as HashMap
import qualified Data.Set as Set
import qualified Control.Foldl as Foldl
import Data.String (IsString, fromString)
import Control.Arrow (second)
import Control.Applicative
import Control.Monad.Trans.Writer
import Prelude (Bool (..), ($), IO, Eq (..), fromIntegral, Ord (..), String, mod, Int, Integer, show,
return, asTypeOf, (.), Show, (+), succ, Maybe (..), (*), mod, map, flip, otherwise, (-), div, maybe, Char)
import qualified Prelude
newtype NonEmpty' a = NonEmpty' (NE.NonEmpty a)
deriving (Show, Eq)
instance Arbitrary a => Arbitrary (NonEmpty' a) where
arbitrary = NonEmpty' <$> ((NE.:|) <$> arbitrary <*> arbitrary)
-- | Arbitrary newtype for key-value pairs without any duplicate keys
-- and is not empty
newtype DuplPairs k v = DuplPairs { unDupl :: [(k,v)] }
deriving (Eq, Show)
removeDuplicateKeys :: Ord k => [(k,v)] -> [(k,v)]
removeDuplicateKeys m = go Set.empty m
where go _ [] = []
go used ((k,v):xs)
| k `member` used = go used xs
| otherwise = (k,v) : go (insertSet k used) xs
instance (Arbitrary k, Arbitrary v, Ord k, Eq v) => Arbitrary (DuplPairs k v) where
arbitrary = DuplPairs . removeDuplicateKeys <$> arbitrary `suchThat` (/= [])
shrink (DuplPairs xs) =
map (DuplPairs . removeDuplicateKeys) $ filter (/= []) $ shrink xs
-- | Arbitrary newtype for small lists whose length is <= 10
--
-- Used for testing 'unionsWith'
newtype SmallList a = SmallList { getSmallList :: [a] }
deriving (Eq, Show, Ord)
instance (Arbitrary a) => Arbitrary (SmallList a) where
arbitrary = SmallList <$> arbitrary `suchThat` ((<= 10) . olength)
shrink (SmallList xs) =
map SmallList $ filter ((<= 10) . olength) $ shrink xs
-- | Choose a random key from a key-value pair list
indexIn :: (Show k, Testable prop) => [(k,v)] -> (k -> prop) -> Property
indexIn = forAll . elements . map Prelude.fst
-- | Type restricted 'fromList'
fromListAs :: IsSequence a => [Element a] -> a -> a
fromListAs xs _ = fromList xs
-- | Type restricted 'mapFromListAs'
mapFromListAs :: IsMap a => [(ContainerKey a, MapValue a)] -> a -> a
mapFromListAs xs _ = mapFromList xs
instance IsString (V.Vector Char) where fromString = V.fromList
instance IsString (U.Vector Char) where fromString = U.fromList
instance IsString (VS.Vector Char) where fromString = VS.fromList
main :: IO ()
main = hspec $ do
describe "onull" $ do
it "works on empty lists" $ onull [] @?= True
it "works on non-empty lists" $ onull [()] @?= False
it "works on empty texts" $ onull ("" :: Text) @?= True
it "works on non-empty texts" $ onull ("foo" :: Text) @?= False
describe "osum" $ do
prop "works on lists" $ \(Small x) (Small y) ->
y >= x ==> osum [x..y] @?= ((x + y) * (y - x + 1) `div` (2 :: Int))
describe "oproduct" $ do
prop "works on lists" $ \(Positive x) (Positive y) ->
let fact n = oproduct [1..n]
in (y :: Integer) > (x :: Integer) ==>
oproduct [x..y] @?= fact y `div` fact (x - 1)
describe "olength" $ do
prop "works on lists" $ \(NonNegative i) ->
olength (replicate i () :: [()]) @?= i
prop "works on texts" $ \(NonNegative i) ->
olength (replicate i 'a' :: Text) @?= i
prop "works on lazy bytestrings" $ \(NonNegative (Small i)) ->
olength64 (replicate i 6 :: L.ByteString) @?= i
describe "omap" $ do
prop "works on lists" $ \xs ->
omap (+1) xs @?= map (+1) (xs :: [Int])
prop "works on lazy bytestrings" $ \xs ->
omap (+1) (fromList xs :: L.ByteString) @?= fromList (map (+1) xs)
prop "works on texts" $ \xs ->
omap succ (fromList xs :: Text) @?= fromList (map succ xs)
describe "oconcatMap" $ do
prop "works on lists" $ \xs ->
oconcatMap (: []) xs @?= (xs :: [Int])
describe "ocompareLength" $ do
prop "works on lists" $ \(Positive i) j ->
ocompareLength (replicate i () :: [()]) j @?= compare i j
describe "groupAll" $ do
it "works on lists" $ groupAll ("abcabcabc" :: String) @?= ["aaa", "bbb", "ccc"]
it "works on texts" $ groupAll ("abcabcabc" :: Text) @?= ["aaa", "bbb", "ccc"]
describe "unsnoc" $ do
let test name dummy = prop name $ \(QCM.NonEmpty xs) ->
let seq' = fromListAs xs dummy
in case unsnoc seq' of
Just (y, z) -> do
y SG.<> singleton z @?= seq'
snoc y z @?= seq'
otoList (snoc y z) @?= xs
Nothing -> expectationFailure "unsnoc returned Nothing"
test "works on lists" ([] :: [Int])
test "works on texts" ("" :: Text)
test "works on lazy bytestrings" L.empty
describe "index" $ do
let test name dummy = prop name $
\i' (QCM.NonEmpty xs) ->
let seq' = fromListAs xs dummy
mx = index xs (fromIntegral i)
i = fromIntegral (i' :: Int)
in do
mx @?= index seq' i
case mx of
Nothing -> return ()
Just x -> indexEx seq' i @?= x
test "works on lists" ([] :: [Int])
test "works on strict texts" ("" :: Text)
test "works on lazy texts" ("" :: TL.Text)
test "works on strict bytestrings" S.empty
test "works on lazy bytestrings" L.empty
test "works on Vector" (V.singleton (1 :: Int))
test "works on SVector" (VS.singleton (1 :: Int))
test "works on UVector" (U.singleton (1 :: Int))
test "works on Seq" (Seq.fromList [1 :: Int])
describe "groupAllOn" $ do
it "works on lists" $
groupAllOn (`mod` 3) ([1..9] :: [Int]) @?= [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
describe "breakWord" $ do
let test x y z = it (show (x, y, z)) $ breakWord (x :: Text) @?= (y, z)
test "hello world" "hello" "world"
test "hello world" "hello" "world"
test "hello\r\nworld" "hello" "world"
test "hello there world" "hello" "there world"
test "" "" ""
test "hello \n\r\t" "hello" ""
describe "breakLine" $ do
let test x y z = it (show (x, y, z)) $ breakLine (x :: Text) @?= (y, z)
test "hello world" "hello world" ""
test "hello\r\n world" "hello" " world"
test "hello\n world" "hello" " world"
test "hello\r world" "hello\r world" ""
test "hello\r\nworld" "hello" "world"
test "hello\r\nthere\nworld" "hello" "there\nworld"
test "hello\n\r\nworld" "hello" "\r\nworld"
test "" "" ""
describe "omapM_" $ do
let test typ dummy = prop typ $ \input ->
input @?= execWriter (omapM_ (tell . return) (fromListAs input dummy))
test "works on strict bytestrings" S.empty
test "works on lazy bytestrings" L.empty
test "works on strict texts" T.empty
test "works on lazy texts" TL.empty
describe "inits" $ do
let test typ emptyTyp = describe typ $ do
it "empty" $ inits emptyTyp @?= [""]
it "one element" $ inits ("a" <> emptyTyp) @?= ["", "a"]
it "two elements" $ inits ("ab" <> emptyTyp) @?= ["", "a", "ab"]
test "String" (mempty :: String)
test "StrictBytestring" S.empty
test "LazyBytestring" L.empty
test "StrictText" T.empty
test "LazyText" TL.empty
test "Seq" Seq.empty
test "Vector" (mempty :: V.Vector Char)
test "Unboxed Vector" (mempty :: U.Vector Char)
test "Storable Vector" (mempty :: VS.Vector Char)
describe "tails" $ do
let test typ emptyTyp = describe typ $ do
it "empty" $ tails emptyTyp @?= [""]
it "one element" $ tails ("a" <> emptyTyp) @?= ["a", ""]
it "two elements" $ tails ("ab" <> emptyTyp) @?= ["ab", "b", ""]
test "String" (mempty :: String)
test "StrictBytestring" S.empty
test "LazyBytestring" L.empty
test "StrictText" T.empty
test "LazyText" TL.empty
test "Seq" Seq.empty
test "Vector" (mempty :: V.Vector Char)
test "Unboxed Vector" (mempty :: U.Vector Char)
test "Storable Vector" (mempty :: VS.Vector Char)
describe "initTails" $ do
let test typ emptyTyp = describe typ $ do
it "empty" $ initTails emptyTyp @?= [("","")]
it "one element" $ initTails ("a" <> emptyTyp) @?= [("","a"), ("a","")]
it "two elements" $ initTails ("ab" <> emptyTyp) @?= [("","ab"), ("a","b"), ("ab","")]
test "String" (mempty :: String)
test "StrictBytestring" S.empty
test "LazyBytestring" L.empty
test "StrictText" T.empty
test "LazyText" TL.empty
test "Seq" Seq.empty
test "Vector" (mempty :: V.Vector Char)
test "Unboxed Vector" (mempty :: U.Vector Char)
test "Storable Vector" (mempty :: VS.Vector Char)
describe "NonNull" $ do
describe "fromNonEmpty" $ do
prop "toMinList" $ \(NonEmpty' ne) ->
(NE.toList ne :: [Int]) @?= NN.toNullable (NN.toMinList ne)
describe "toNonEmpty" $ do
it "converts nonnull to nonempty" $ do
NN.toNonEmpty (NN.impureNonNull [1,2,3]) @?= NE.fromList [1,2,3]
describe "mapNonNull" $ do
prop "mapNonNull id == id" $ \x xs ->
let nonNull = NN.ncons x (xs :: [Int])
in NN.mapNonNull Prelude.id nonNull @?= nonNull
prop "mapNonNull (f . g) == mapNonNull f . mapNonNull g" $
\(Fn (f :: Integer -> String)) (Fn (g :: Int -> Integer)) x xs ->
let nns = NN.ncons x (xs :: [Int])
in NN.mapNonNull (f . g) nns @?= NN.mapNonNull f (NN.mapNonNull g nns)
let -- | Type restricted 'NN.ncons'
nconsAs :: IsSequence seq => Element seq -> [Element seq] -> seq -> NN.NonNull seq
nconsAs x xs _ = NN.ncons x (fromList xs)
test :: (IsSequence typ, Ord (Element typ), Arbitrary (Element typ), Show (Element typ), Show typ, Eq typ, Eq (Element typ))
=> String -> typ -> Spec
test typ du = describe typ $ do
prop "head" $ \x xs ->
NN.head (nconsAs x xs du) @?= x
prop "tail" $ \x xs ->
NN.tail (nconsAs x xs du) @?= fromList xs
prop "last" $ \x xs ->
NN.last (reverse $ nconsAs x xs du) @?= x
prop "init" $ \x xs ->
NN.init (reverse $ nconsAs x xs du) @?= reverse (fromList xs)
prop "maximum" $ \x xs ->
NN.maximum (nconsAs x xs du) @?= Prelude.maximum (x:xs)
prop "maximumBy" $ \x xs ->
NN.maximumBy compare (nconsAs x xs du) @?= Prelude.maximum (x:xs)
prop "minimum" $ \x xs ->
NN.minimum (nconsAs x xs du) @?= Prelude.minimum (x:xs)
prop "minimumBy" $ \x xs ->
NN.minimumBy compare (nconsAs x xs du) @?= Prelude.minimum (x:xs)
prop "ofoldMap1" $ \x xs ->
SG.getMax (NN.ofoldMap1 SG.Max $ nconsAs x xs du) @?= Prelude.maximum (x:xs)
prop "ofoldr1" $ \x xs ->
NN.ofoldr1 Prelude.min (nconsAs x xs du) @?= Prelude.minimum (x:xs)
prop "ofoldl1'" $ \x xs ->
NN.ofoldl1' Prelude.min (nconsAs x xs du) @?= Prelude.minimum (x:xs)
test "Strict ByteString" S.empty
test "Lazy ByteString" L.empty
test "Strict Text" T.empty
test "Lazy Text" TL.empty
test "Vector" (V.empty :: V.Vector Int)
test "Unboxed Vector" (U.empty :: U.Vector Int)
test "Storable Vector" (VS.empty :: VS.Vector Int)
test "List" ([5 :: Int])
describe "Containers" $ do
let test typ dummy xlookup xinsert xdelete = describe typ $ do
prop "difference" $ \(DuplPairs xs) (DuplPairs ys) ->
let m1 = mapFromList xs `difference` mapFromList ys
m2 = mapFromListAs (xs `difference` ys) dummy
in m1 @?= m2
prop "lookup" $ \(DuplPairs xs) -> indexIn xs $ \k ->
let m = mapFromListAs xs dummy
v1 = lookup k m
in do
v1 @?= lookup k xs
v1 @?= xlookup k m
prop "insert" $ \(DuplPairs xs) v -> indexIn xs $ \k ->
let m = mapFromListAs xs dummy
m1 = insertMap k v m
in do
m1 @?= mapFromList (insertMap k v xs)
m1 @?= xinsert k v m
prop "delete" $ \(DuplPairs xs) -> indexIn xs $ \k ->
let m = mapFromListAs xs dummy
m1 = deleteMap k m
in do
m1 @?= mapFromList (deleteMap k xs)
m1 @?= xdelete k m
prop "singletonMap" $ \k v ->
singletonMap k v @?= (mapFromListAs [(k, v)] dummy)
prop "findWithDefault" $ \(DuplPairs xs) k v ->
findWithDefault v k (mapFromListAs xs dummy)
@?= findWithDefault v k xs
prop "insertWith" $ \(DuplPairs xs) k v ->
insertWith (+) k v (mapFromListAs xs dummy)
@?= mapFromList (insertWith (+) k v xs)
prop "insertWithKey" $ \(DuplPairs xs) k v ->
let m = mapFromListAs xs dummy
f x y z = x + y + z
in insertWithKey f k v m
@?= mapFromList (insertWithKey f k v xs)
prop "insertLookupWithKey" $ \(DuplPairs xs) k v ->
let m = mapFromListAs xs dummy
f x y z = x + y + z
in insertLookupWithKey f k v m @?=
second mapFromList (insertLookupWithKey f k v xs)
prop "adjustMap" $ \(DuplPairs xs) k ->
adjustMap succ k (mapFromListAs xs dummy)
@?= mapFromList (adjustMap succ k xs)
prop "adjustWithKey" $ \(DuplPairs xs) k ->
adjustWithKey (+) k (mapFromListAs xs dummy)
@?= mapFromList (adjustWithKey (+) k xs)
prop "updateMap" $ \(DuplPairs xs) k ->
let f i = if i < 0 then Nothing else Just $ i * 2
in updateMap f k (mapFromListAs xs dummy)
@?= mapFromList (updateMap f k xs)
prop "updateWithKey" $ \(DuplPairs xs) k' ->
let f k i = if i < 0 then Nothing else Just $ i * k
in updateWithKey f k' (mapFromListAs xs dummy)
@?= mapFromList (updateWithKey f k' xs)
prop "updateLookupWithKey" $ \(DuplPairs xs) k' ->
let f k i = if i < 0 then Nothing else Just $ i * k
in updateLookupWithKey f k' (mapFromListAs xs dummy)
@?= second mapFromList (updateLookupWithKey f k' xs)
prop "alter" $ \(DuplPairs xs) k ->
let m = mapFromListAs xs dummy
f Nothing = Just (-1)
f (Just i) = if i < 0 then Nothing else Just (i * 2)
in lookup k (alterMap f k m) @?= f (lookup k m)
prop "unionWith" $ \(DuplPairs xs) (DuplPairs ys) ->
let m1 = unionWith (+)
(mapFromListAs xs dummy)
(mapFromListAs ys dummy)
m2 = mapFromList (unionWith (+) xs ys)
in m1 @?= m2
prop "unionWithKey" $ \(DuplPairs xs) (DuplPairs ys) ->
let f k x y = k + x + y
m1 = unionWithKey f
(mapFromListAs xs dummy)
(mapFromListAs ys dummy)
m2 = mapFromList (unionWithKey f xs ys)
in m1 @?= m2
prop "unionsWith" $ \(SmallList xss) ->
let duplXss = map unDupl xss
ms = map mapFromList duplXss `asTypeOf` [dummy]
in unionsWith (+) ms
@?= mapFromList (unionsWith (+) duplXss)
prop "mapWithKey" $ \(DuplPairs xs) ->
let m1 = mapWithKey (+) (mapFromList xs) `asTypeOf` dummy
m2 = mapFromList $ mapWithKey (+) xs
in m1 @?= m2
prop "omapKeysWith" $ \(DuplPairs xs) ->
let f = flip mod 5
m1 = omapKeysWith (+) f (mapFromList xs) `asTypeOf` dummy
m2 = mapFromList $ omapKeysWith (+) f xs
in m1 @?= m2
test "Data.Map" (Map.empty :: Map.Map Int Int)
Map.lookup Map.insert Map.delete
test "Data.IntMap" (IntMap.empty :: IntMap.IntMap Int)
IntMap.lookup IntMap.insert IntMap.delete
test "Data.HashMap" (HashMap.empty :: HashMap.HashMap Int Int)
HashMap.lookup HashMap.insert HashMap.delete
describe "Foldl Integration" $ do
prop "vector" $ \xs -> do
#if MIN_VERSION_foldl(1,3,0)
let x1 = Foldl.fold Foldl.vector (xs :: [Int])
x2 = Foldl.purely ofoldlUnwrap Foldl.vector xs
#else
x1 <- Foldl.foldM Foldl.vector (xs :: [Int])
x2 <- Foldl.impurely ofoldMUnwrap Foldl.vector xs
#endif
x2 @?= (x1 :: V.Vector Int)
prop "length" $ \xs -> do
let x1 = Foldl.fold Foldl.length (xs :: [Int])
x2 = Foldl.purely ofoldlUnwrap Foldl.length xs
x2 @?= x1
describe "Replacing" $ do
let test typ dummy = describe typ $ do
prop "replaceElem old new === omap (\\x -> if x == old then new else x)" $
-- replace random element or any random value with random new value
\x list new -> forAll (elements (x:list)) $ \old ->
let seq' = fromListAs list dummy
in replaceElem old new seq' @?= omap (\x' -> if x' == old then new else x') seq'
#if MIN_VERSION_QuickCheck(2,8,0)
prop "replaceSeq old new === ointercalate new . splitSeq old" $
-- replace random subsequence with random new sequence
\list new -> forAll (sublistOf list) $ \old ->
let [seq', old', new'] = map (`fromListAs` dummy) [list, old, new]
in replaceSeq old' new' seq' @?= ointercalate new' (splitSeq old' seq')
prop "replaceSeq old old === id" $ \list -> forAll (sublistOf list) $ \old ->
let [seq', old'] = map (`fromListAs` dummy) [list, old]
in replaceSeq old' old' seq' @?= seq'
#endif
test "List" ([] :: [Int])
test "Vector" (V.empty :: V.Vector Int)
test "Storable Vector" (VS.empty :: VS.Vector Int)
test "Unboxed Vector" (U.empty :: U.Vector Int)
test "Strict ByteString" S.empty
test "Lazy ByteString" L.empty
test "Strict Text" T.empty
test "Lazy Text" TL.empty
describe "Sorting" $ do
let test typ dummy = describe typ $ do
prop "sortBy" $ \input -> do
let f x y = compare y x
fromList (sortBy f input) @?= sortBy f (fromListAs input dummy)
prop "sort" $ \input ->
fromList (sort input) @?= sort (fromListAs input dummy)
test "List" ([] :: [Int])
test "Vector" (V.empty :: V.Vector Int)
test "Storable Vector" (VS.empty :: VS.Vector Int)
test "Unboxed Vector" (U.empty :: U.Vector Int)
test "Strict ByteString" S.empty
test "Lazy ByteString" L.empty
test "Strict Text" T.empty
test "Lazy Text" TL.empty
describe "Intercalate" $ do
let test typ dummy = describe typ $ do
prop "intercalate === defaultIntercalate" $ \list lists ->
let seq' = fromListAs list dummy
seqs = map (`fromListAs` dummy) lists
in ointercalate seq' seqs @?= fromList (List.intercalate list lists)
test "List" ([] :: [Int])
test "Vector" (V.empty :: V.Vector Int)
test "Storable Vector" (VS.empty :: VS.Vector Int)
test "Unboxed Vector" (U.empty :: U.Vector Int)
test "Strict ByteString" S.empty
test "Lazy ByteString" L.empty
test "Strict Text" T.empty
test "Lazy Text" TL.empty
describe "Splitting" $ do
let test typ dummy = describe typ $ do
let fromList' = (`fromListAs` dummy)
let fromSepList sep = fromList' . map (fromMaybe sep)
prop "intercalate sep . splitSeq sep === id" $
\(fromList' -> sep) ->
\(mconcat . map (maybe sep fromList') -> xs) ->
ointercalate sep (splitSeq sep xs) @?= xs
prop "splitSeq mempty xs === mempty : map singleton (otoList xs)" $
\input ->
splitSeq mempty (fromList' input) @?= mempty : map singleton input
prop "splitSeq _ mempty == [mempty]" $
\(fromList' -> sep) ->
splitSeq sep mempty @?= [mempty]
prop "intercalate (singleton sep) . splitElem sep === id" $
\sep -> \(fromSepList sep -> xs) ->
ointercalate (singleton sep) (splitElem sep xs) @?= xs
prop "length . splitElem sep === succ . length . filter (== sep)" $
\sep -> \(fromSepList sep -> xs) ->
olength (splitElem sep xs) @?= olength (filter (== sep) xs) + 1
prop "splitElem sep (replicate n sep) == replicate (n+1) mempty" $
\(NonNegative n) sep ->
splitElem sep (fromList' (replicate n sep)) @?= replicate (n + 1) mempty
prop "splitElem sep === splitWhen (== sep)" $
\sep -> \(fromSepList sep -> xs) ->
splitElem sep xs @?= splitWhen (== sep) xs
prop "splitElem sep === splitSeq (singleton sep)" $
\sep -> \(fromSepList sep -> xs) ->
splitElem sep xs @?= splitSeq (singleton sep) xs
test "List" ([] :: [Int])
test "Vector" (V.empty :: V.Vector Int)
test "Storable Vector" (VS.empty :: VS.Vector Int)
test "Unboxed Vector" (U.empty :: U.Vector Int)
test "Strict ByteString" S.empty
test "Lazy ByteString" L.empty
test "Strict Text" T.empty
test "Lazy Text" TL.empty
describe "Other Issues" $ do
it "#26 headEx on a list works" $
headEx (1 : filter Prelude.odd [2,4..]) @?= (1 :: Int)
it "#31 find doesn't infinitely loop on NonEmpty" $
find (== "a") ("a" NE.:| ["d","fgf"]) @?= Just ("a" :: String)
it "#83 head on Seq works correctly" $ do
headEx (Seq.fromList [1 :: Int,2,3]) @?= (1 :: Int)
headMay (Seq.fromList [] :: Seq.Seq Int) @?= Nothing
|