1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
|
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
-- | Efficient combinatorial algorithms over multisets, including
-- generating all permutations, partitions, subsets, cycles, and
-- other combinatorial structures based on multisets. Note that an
-- 'Eq' or 'Ord' instance on the elements is /not/ required; the
-- algorithms are careful to keep track of which things are (by
-- construction) equal to which other things, so equality testing is
-- not needed.
module Math.Combinatorics.Multiset
( -- * The 'Multiset' type
Count
, Multiset(..)
, emptyMS, singletonMS
, consMS, (+:)
-- ** Conversions
, toList
, fromList
, fromListEq
, fromDistinctList
, fromCounts
, getCounts
, size
-- ** Operations
, disjUnion
, disjUnions
-- * Permutations
, permutations
, permutationsRLE
-- * Partitions
, Vec
, vPartitions
, partitions
-- * Submultisets
, splits
, kSubsets
-- * Cycles and bracelets
, cycles
, bracelets
, genFixedBracelets
-- * Miscellaneous
, sequenceMS
) where
import Control.Arrow (first, second, (&&&), (***))
import Control.Monad (forM_, when)
import Control.Monad.Trans.Writer
import qualified Data.IntMap.Strict as IM
import Data.List (group, partition, sort)
import Data.Maybe (catMaybes, fromJust)
type Count = Int
-- | A multiset is represented as a list of (element, count) pairs.
-- We maintain the invariants that the counts are always positive,
-- and no element ever appears more than once.
newtype Multiset a = MS { toCounts :: [(a, Count)] }
deriving (Show, Functor)
-- | Construct a 'Multiset' from a list of (element, count) pairs.
-- Precondition: the counts must all be positive, and there must not
-- be any duplicate elements.
fromCounts :: [(a, Count)] -> Multiset a
fromCounts = MS
-- | Extract just the element counts from a multiset, forgetting the
-- elements.
getCounts :: Multiset a -> [Count]
getCounts = map snd . toCounts
-- | Compute the total size of a multiset.
size :: Multiset a -> Int
size = sum . getCounts
liftMS :: ([(a, Count)] -> [(b, Count)]) -> Multiset a -> Multiset b
liftMS f (MS m) = MS (f m)
-- | A multiset with no values in it.
emptyMS :: Multiset a
emptyMS = MS []
-- | Create a multiset with only a single value in it.
singletonMS :: a -> Multiset a
singletonMS a = MS [(a,1)]
-- | Add an element with multiplicity to a multiset. Precondition:
-- the new element is distinct from all elements already in the
-- multiset.
consMS :: (a, Count) -> Multiset a -> Multiset a
consMS e@(_,c) (MS m)
| c > 0 = MS (e:m)
| otherwise = MS m
-- | A convenient shorthand for 'consMS'.
(+:) :: (a, Count) -> Multiset a -> Multiset a
(+:) = consMS
-- | Convert a multiset to a list.
toList :: Multiset a -> [a]
toList = expandCounts . toCounts
expandCounts :: [(a, Count)] -> [a]
expandCounts = concatMap (uncurry (flip replicate))
-- | Efficiently convert a list to a multiset, given an 'Ord' instance
-- for the elements. This method is provided just for convenience.
-- you can also use 'fromListEq' with only an 'Eq' instance, or
-- construct 'Multiset's directly using 'fromCounts'.
fromList :: Ord a => [a] -> Multiset a
fromList = fromCounts . map (head &&& length) . group . sort
-- | Convert a list to a multiset, given an 'Eq' instance for the
-- elements.
fromListEq :: Eq a => [a] -> Multiset a
fromListEq = fromCounts . fromListEq'
where fromListEq' [] = []
fromListEq' (x:xs) = (x, 1 + length xEqs) : fromListEq' xNeqs
where
(xEqs, xNeqs) = partition (==x) xs
-- | Make a multiset with one copy of each element from a list of
-- distinct elements.
fromDistinctList :: [a] -> Multiset a
fromDistinctList = fromCounts . map (\x -> (x,1))
-- | Form the disjoint union of two multisets; i.e. we assume the two
-- multisets share no elements in common.
disjUnion :: Multiset a -> Multiset a -> Multiset a
disjUnion (MS xs) (MS ys) = MS (xs ++ ys)
-- | Form the disjoint union of a collection of multisets. We assume
-- that the multisets all have distinct elements.
disjUnions :: [Multiset a] -> Multiset a
disjUnions = foldr disjUnion (MS [])
-- | In order to generate permutations of a multiset, we need to keep
-- track of the most recently used element in the permutation being
-- built, so that we don't use it again immediately. The
-- 'RMultiset' type (for \"restricted multiset\") records this
-- information, consisting of a multiset possibly paired with an
-- element (with multiplicity) which is also part of the multiset,
-- but should not be used at the beginning of permutations.
data RMultiset a = RMS (Maybe (a, Count)) [(a,Count)]
deriving Show
-- | Convert a 'Multiset' to a 'RMultiset' (with no avoided element).
toRMS :: Multiset a -> RMultiset a
toRMS = RMS Nothing . toCounts
-- | Convert a 'RMultiset' to a 'Multiset'.
fromRMS :: RMultiset a -> Multiset a
fromRMS (RMS Nothing m) = MS m
fromRMS (RMS (Just e) m) = MS (e:m)
-- | List all the distinct permutations of the elements of a
-- multiset.
--
-- For example, @permutations (fromList \"abb\") ==
-- [\"abb\",\"bba\",\"bab\"]@, whereas @Data.List.permutations
-- \"abb\" == [\"abb\",\"bab\",\"bba\",\"bba\",\"bab\",\"abb\"]@.
-- This function is equivalent to, but /much/ more efficient than,
-- @nub . Data.List.permutations@, and even works when the elements
-- have no 'Eq' instance.
--
-- Note that this is a specialized version of 'permutationsRLE',
-- where each run has been expanded via 'replicate'.
permutations :: Multiset a -> [[a]]
permutations = map expandCounts . permutationsRLE
-- | List all the distinct permutations of the elements of a multiset,
-- with each permutation run-length encoded. (Note that the
-- run-length encoding is a natural byproduct of the algorithm used,
-- not a separate postprocessing step.)
--
-- For example, @permutationsRLE [('a',1), ('b',2)] ==
-- [[('a',1),('b',2)],[('b',2),('a',1)],[('b',1),('a',1),('b',1)]]@.
--
-- (Note that although the output type is newtype-equivalent to
-- @[Multiset a]@, we don't call it that since the output may
-- violate the 'Multiset' invariant that no element should appear
-- more than once. And indeed, morally this function does not
-- output multisets at all.)
permutationsRLE :: Multiset a -> [[(a,Count)]]
permutationsRLE (MS []) = [[]]
permutationsRLE m = permutationsRLE' (toRMS m)
-- | List all the (run-length encoded) distinct permutations of the
-- elements of a multiset which do not start with the element to
-- avoid (if any).
permutationsRLE' :: RMultiset a -> [[(a,Count)]]
-- If only one element is left, there's only one permutation.
permutationsRLE' (RMS Nothing [(x,n)]) = [[(x,n)]]
-- Otherwise, select an element+multiplicity in all possible ways, and
-- concatenate the elements to all possible permutations of the
-- remaining multiset.
permutationsRLE' m = [ e : p
| (e, m') <- selectRMS m
, p <- permutationsRLE' m'
]
-- | Select an element + multiplicity from a multiset in all possible
-- ways, appropriately keeping track of elements to avoid at the
-- start of permutations.
selectRMS :: RMultiset a -> [((a, Count), RMultiset a)]
-- No elements to select.
selectRMS (RMS _ []) = []
-- Selecting from a multiset with n copies of x, avoiding e:
selectRMS (RMS e ((x,n) : ms)) =
-- If we select all n copies of x, there are no copies of x left to avoid;
-- stick e (if it exists) back into the remaining multiset.
((x,n), RMS Nothing (maybe ms (:ms) e)) :
-- We can also select any number of copies of x from (n-1) down to 1; in each case,
-- we avoid the remaining copies of x and put e back into the returned multiset.
[ ( (x,k), RMS (Just (x,n-k))
(maybe ms (:ms) e) )
| k <- [n-1, n-2 .. 1]
] ++
-- Finally, we can recursively choose something other than x.
map (second (consRMS (x,n))) (selectRMS (RMS e ms))
consRMS :: (a, Count) -> RMultiset a -> RMultiset a
consRMS x (RMS e m) = RMS e (x:m)
-- Some QuickCheck properties. Of course, due to combinatorial
-- explosion these are of limited utility!
-- newtype ArbCount = ArbCount Int
-- deriving (Eq, Show, Num, Real, Enum, Ord, Integral)
-- instance Arbitrary Count where
-- arbitrary = elements (map ArbCount [1..3])
-- prop_perms_distinct :: Multiset Char ArbCount -> Bool
-- prop_perms_distinct m = length ps == length (nub ps)
-- where ps = permutations m
-- prop_perms_are_perms :: Multiset Char ArbCount -> Bool
-- prop_perms_are_perms m = all ((==l') . sort) (permutations m)
-- where l' = sort (toList m)
---------------------
-- Partitions
---------------------
-- | Element count vector.
type Vec = [Count]
-- | Componentwise comparison of count vectors.
(<|=) :: Vec -> Vec -> Bool
xs <|= ys = and $ zipWith (<=) xs ys
-- | 'vZero v' produces a zero vector of the same length as @v@.
vZero :: Vec -> Vec
vZero = map (const 0)
-- | Test for the zero vector.
vIsZero :: Vec -> Bool
vIsZero = all (==0)
-- | Do vector arithmetic componentwise.
(.+.), (.-.) :: Vec -> Vec -> Vec
(.+.) = zipWith (+)
(.-.) = zipWith (-)
-- | Multiply a count vector by a scalar.
(*.) :: Count -> Vec -> Vec
(*.) n = map (n*)
-- | 'v1 `vDiv` v2' is the largest scalar multiple of 'v2' which is
-- elementwise less than or equal to 'v1'.
vDiv :: Vec -> Vec -> Count
vDiv v1 v2 = minimum . catMaybes $ zipWith zdiv v1 v2
where zdiv _ 0 = Nothing
zdiv x y = Just $ x `div` y
-- | 'vInc within v' lexicographically increments 'v' with respect to
-- 'within'. For example, @vInc [2,3,5] [1,3,4] == [1,3,5]@, and
-- @vInc [2,3,5] [1,3,5] == [2,0,0]@.
vInc :: Vec -> Vec -> Vec
vInc lim v = reverse (vInc' (reverse lim) (reverse v))
where vInc' _ [] = []
vInc' [] (x:xs) = x+1 : xs
vInc' (l:ls) (x:xs) | x < l = x+1 : xs
| otherwise = 0 : vInc' ls xs
-- | Generate all vector partitions, representing each partition as a
-- multiset of vectors.
--
-- This code is a slight generalization of the code published in
--
-- Brent Yorgey. \"Generating Multiset Partitions\". In: The
-- Monad.Reader, Issue 8, September 2007.
-- <http://www.haskell.org/sitewiki/images/d/dd/TMR-Issue8.pdf>
--
-- See that article for a detailed discussion of the code and how it works.
vPartitions :: Vec -> [Multiset Vec]
vPartitions v = vPart v (vZero v) where
vPart v _ | vIsZero v = [MS []]
vPart v vL
| v <= vL = []
| otherwise = MS [(v,1)]
: [ (v',k) +: p' | v' <- withinFromTo v (vHalf v) (vInc v vL)
, k <- [1 .. (v `vDiv` v')]
, p' <- vPart (v .-. (k *. v')) v' ]
-- | 'vHalf v' computes the \"lexicographic half\" of 'v', that is,
-- the vector which is the middle element (biased towards the end)
-- in a lexicographically decreasing list of all the vectors
-- elementwise no greater than 'v'.
vHalf :: Vec -> Vec
vHalf [] = []
vHalf (x:xs) | (even x) = (x `div` 2) : vHalf xs
| otherwise = (x `div` 2) : xs
downFrom n = [n,(n-1)..0]
-- | 'within m' generates a lexicographically decreasing list of
-- vectors elementwise no greater than 'm'.
within :: Vec -> [Vec]
within = sequence . map downFrom
-- | Clip one vector against another.
clip :: Vec -> Vec -> Vec
clip = zipWith min
-- | 'withinFromTo m s e' efficiently generates a lexicographically
-- decreasing list of vectors which are elementwise no greater than
-- 'm' and lexicographically between 's' and 'e'.
withinFromTo :: Vec -> Vec -> Vec -> [Vec]
withinFromTo m s e | not (s <|= m) = withinFromTo m (clip m s) e
withinFromTo m s e | e > s = []
withinFromTo m s e = wFT m s e True True
where
wFT [] _ _ _ _ = [[]]
wFT (m:ms) (s:ss) (e:es) useS useE =
let start = if useS then s else m
end = if useE then e else 0
in
[x:xs | x <- [start,(start-1)..end],
let useS' = useS && x==s,
let useE' = useE && x==e,
xs <- wFT ms ss es useS' useE' ]
-- | Efficiently generate all distinct multiset partitions. Note that
-- each partition is represented as a multiset of parts (each of
-- which is a multiset) in order to properly reflect the fact that
-- some parts may occur multiple times.
partitions :: Multiset a -> [Multiset (Multiset a)]
partitions (MS []) = [MS []]
partitions (MS m) = (map . fmap) (combine elts) $ vPartitions counts
where (elts, counts) = unzip m
combine es cs = MS . filter ((/=0) . snd) $ zip es cs
-- | Generate all splittings of a multiset into two submultisets,
-- i.e. all size-two partitions.
splits :: Multiset a -> [(Multiset a, Multiset a)]
splits (MS []) = [(MS [], MS [])]
splits (MS ((x,n):m)) =
for [0..n] $ \k ->
map (addElt x k *** addElt x (n-k)) (splits (MS m))
-- | Generate all size-k submultisets.
kSubsets :: Count -> Multiset a -> [Multiset a]
kSubsets 0 _ = [MS []]
kSubsets _ (MS []) = []
kSubsets k (MS ((x,n):m)) =
for [0 .. min k n] $ \j ->
map (addElt x j) (kSubsets (k - j) (MS m))
for = flip concatMap
addElt _ 0 = id
addElt x k = ((x,k) +:)
----------------------------------------------------------------------
-- Cycles (aka Necklaces)
----------------------------------------------------------------------
-- | Generate all distinct cycles, aka necklaces, with elements taken
-- from a multiset. See J. Sawada, \"A fast algorithm to generate
-- necklaces with fixed content\", J. Theor. Comput. Sci. 301 (2003)
-- pp. 477-489.
--
-- Given the ordering on the elements of the multiset based on their
-- position in the multiset representation (with \"smaller\"
-- elements first), in @map reverse (cycles m)@, each generated
-- cycle is lexicographically smallest among all its cyclic shifts,
-- and furthermore, the cycles occur in reverse lexicographic
-- order. (It's simply more convenient/efficient to generate the
-- cycles reversed in this way, and of course we get the same set of
-- cycles either way.)
--
-- For example, @cycles (fromList \"aabbc\") ==
-- [\"cabba\",\"bcaba\",\"cbaba\",\"bbcaa\",\"bcbaa\",\"cbbaa\"]@.
cycles :: Multiset a -> [[a]]
cycles (MS []) = [] -- no such thing as an empty cycle
cycles m@(MS ((x1,n1):xs))
| n1 == 1 = (cycles' n 2 1 [(0,x1)] (reverse $ zip [1..] xs))
| otherwise = (cycles' n 2 1 [(0,x1)] (reverse $ zip [0..] ((x1,n1-1):xs)))
where n = sum . getCounts $ m
-- | The first parameter is the length of the necklaces being
-- generated. The second parameter @p@ is the length of the longest
-- prefix of @pre@ which is a Lyndon word, i.e. an aperiodic
-- necklace. @pre@ is the current (reversed) prefix of the
-- necklaces being generated.
cycles' :: Int -> Int -> Int -> [(Int, a)] -> [(Int, (a,Count))] -> [[a]]
cycles' n _ p pre [] | n `mod` p == 0 = [map snd pre]
| otherwise = []
cycles' n t p pre xs =
(takeWhile ((>=atp) . fst) xs) >>= \(j, (xj,_)) ->
cycles' n (t+1) (if j == atp then p else t)
((j,xj):pre)
(remove j xs)
where atp = fst $ pre !! (p - 1)
remove :: Int -> [(Int, (a, Int))] -> [(Int, (a, Int))]
remove _ [] = []
remove j (x@(j',(xj,nj)):xs)
| j == j' && nj == 1 = xs
| j == j' = (j',(xj,nj-1)):xs
| otherwise = x:remove j xs
----------------------------------------------------------------------
-- Bracelets
----------------------------------------------------------------------
-- Some utilities
--------------------------------------------------
-- Indexable and Snocable classes
class Snocable p a where
(|>) :: p -> a -> p
-- 1-based indexing
class Indexable p where
(!) :: p -> Int -> Int
--------------------------------------------------
-- Prenecklaces
type PreNecklace = [Int]
-- A prenecklace, stored backwards, along with its length and its
-- first element cached for quick retrieval.
data Pre = Pre !Int (Maybe Int) PreNecklace
deriving (Show)
emptyPre :: Pre
emptyPre = Pre 0 Nothing []
getPre :: Pre -> PreNecklace
getPre (Pre _ _ as) = reverse as
instance Snocable Pre Int where
(Pre 0 _ []) |> a = Pre 1 (Just a) [a]
(Pre t a1 as) |> a = Pre (t+1) a1 (a:as)
instance Indexable Pre where
_ ! 0 = 0
(Pre _ (Just a1) _) ! 1 = a1
(Pre t _ as) ! i = as !! (t-i)
-- as stores a_t .. a_1.
-- a_1 is the last element, i.e. with index t-1.
-- a_2 has index t-2.
-- In general, a_i has index t-i.
--------------------------------------------------
-- Run-length encoding
-- Run-length encodings. Stored in *reverse* order for easy access to
-- the end.
data RLE a = RLE !Int !Int [(a,Int)]
deriving (Show)
-- First Int is the total length of the decoded list.
-- Second Int is the number of blocks.
emptyRLE :: RLE a
emptyRLE = RLE 0 0 []
compareRLE :: Ord a => [(a,Int)] -> [(a,Int)] -> Ordering
compareRLE [] [] = EQ
compareRLE [] _ = LT
compareRLE _ [] = GT
compareRLE ((a1,n1):rle1) ((a2,n2):rle2)
| (a1,n1) == (a2,n2) = compareRLE rle1 rle2
| a1 < a2 = LT
| a1 > a2 = GT
| (n1 < n2 && (null rle1 || fst (head rle1) < a2)) || (n1 > n2 && not (null rle2) && a1 < fst (head rle2)) = LT
| otherwise = GT
instance Indexable (RLE Int) where
(RLE _ _ []) ! _ = error "Bad index in (!) for RLE"
(RLE n b ((a,v):rest)) ! i
| i <= v = a
| otherwise = (RLE (n-v) (b-1) rest) ! (i-v)
instance Eq a => Snocable (RLE a) a where
(RLE _ _ []) |> a' = RLE 1 1 [(a',1)]
(RLE n b rle@((a,v):rest)) |> a'
| a == a' = RLE (n+1) b ((a,v+1):rest)
| otherwise = RLE (n+1) (b+1) ((a',1):rle)
--------------------------------------------------
-- Prenecklaces + RLE
-- Prenecklaces along with a run-length encoding.
data Pre' = Pre' Pre (RLE Int)
deriving Show
emptyPre' :: Pre'
emptyPre' = Pre' emptyPre emptyRLE
getPre' :: Pre' -> PreNecklace
getPre' (Pre' pre _) = getPre pre
instance Indexable Pre' where
_ ! 0 = 0
(Pre' (Pre len _ _) rle) ! i = rle ! (len - i + 1)
instance Snocable Pre' Int where
(Pre' p rle) |> a = Pre' (p |> a) (rle |> a)
--------------------------------------------------
-- Bracelet generation
type Bracelet = [Int]
-- | An optimized bracelet generation algorithm, based on
-- S. Karim et al, "Generating Bracelets with Fixed Content".
-- <http://www.cis.uoguelph.ca/~sawada/papers/fix-brace.pdf>
--
-- @genFixedBracelets n content@ produces all bracelets (unique up
-- to rotation and reflection) of length @n@ using @content@, which
-- consists of a list of pairs where the pair (a,i) indicates that
-- element a may be used up to i times. It is assumed that the elements
-- are drawn from [0..k].
genFixedBracelets :: Int -> [(Int,Int)] -> [Bracelet]
genFixedBracelets n [(0,k)] | k >= n = [replicate k 0]
| otherwise = []
genFixedBracelets n content = execWriter (go 1 1 0 (IM.fromList content) emptyPre')
where
go :: Int -> Int -> Int -> IM.IntMap Int -> Pre' -> Writer [Bracelet] ()
go _ _ _ con _ | IM.keys con == [0] = return ()
go t p r con pre@(Pre' (Pre _ _ as) _)
| t > n =
when (take (n - r) as >= reverse (take (n-r) as) && n `mod` p == 0) $
tell [getPre' pre]
| otherwise = do
let a' = pre ! (t-p)
forM_ (dropWhile (< a') $ IM.keys con) $ \j -> do
let con' = decrease j con
pre' = pre |> j
c = checkRev2 t pre'
p' | j /= a' = t
| otherwise = p
when (c == EQ) $ go (t+1) p' t con' pre'
when (c == GT) $ go (t+1) p' r con' pre'
decrease :: Int -> IM.IntMap Int -> IM.IntMap Int
decrease j con
| IM.null con = con
| otherwise = IM.alter q j con
where
q (Just 1) = Nothing
q (Just cnt) = Just (cnt-1)
q _ = Nothing
checkRev2 _ (Pre' _ (RLE _ _ rle)) = compareRLE rle (reverse rle)
-- | Generate all distinct bracelets (lists considered equivalent up
-- to rotation and reversal) from a given multiset. The generated
-- bracelets are in lexicographic order, and each is
-- lexicographically smallest among its rotations and reversals.
-- See @genFixedBracelets@ for a slightly more general routine with
-- references.
--
-- For example, @bracelets $ fromList \"RRRRRRRLLL\"@ yields
--
-- > ["LLLRRRRRRR","LLRLRRRRRR","LLRRLRRRRR","LLRRRLRRRR"
-- > ,"LRLRLRRRRR","LRLRRLRRRR","LRLRRRLRRR","LRRLRRLRRR"]
bracelets :: Multiset a -> [[a]]
bracelets ms@(MS cnts) = bs
where
contentMap = IM.fromList (zip [0..] (map fst cnts))
content = zipWith (\i (_,n) -> (i,n)) [0..] cnts
rawBs = genFixedBracelets (size ms) content
bs = map (map (fromJust . flip IM.lookup contentMap)) rawBs
----------------------------------------------------------------------
-- sequenceMS
----------------------------------------------------------------------
-- | Take a multiset of lists, and select one element from each list
-- in every possible combination to form a list of multisets. We
-- assume that all the list elements are distinct.
sequenceMS :: Multiset [a] -> [Multiset a]
sequenceMS = map disjUnions
. sequence
. map (\(xs, n) -> kSubsets n (MS $ uncollate (xs, n)))
. toCounts
uncollate :: ([a], Count) -> [(a, Count)]
uncollate (xs, n) = map (\x -> (x,n)) xs
|