1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
|
{-# LANGUAGE BangPatterns, CPP, DeriveDataTypeable, FlexibleContexts,
FlexibleInstances, MultiParamTypeClasses, MagicHash, Rank2Types,
ScopedTypeVariables, TypeFamilies, UnboxedTuples, TypeOperators
#-}
-- |
-- Module : System.Random.MWC
-- Copyright : (c) 2009-2012 Bryan O'Sullivan
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : portable
--
-- Pseudo-random number generation using Marsaglia's MWC256, (also
-- known as MWC8222) multiply-with-carry generator, which has a period
-- of \(2^{8222}\) and fares well in tests of randomness. It is also
-- extremely fast, between 2 and 3 times faster than the Mersenne
-- Twister. There are two representation of generator: 'Gen' which is
-- generator that uses in-place mutation and 'Seed' which is immutable
-- snapshot of generator's state.
--
--
-- == Initialization
--
-- Generator could be initialized in several ways. One is to obtain
-- randomness from operating system using 'createSystemRandom',
-- 'createSystemSeed' or 'withSystemRandomST' (All examples assume
-- that @System.Random.Stateful@ is imported)
--
-- >>> g <- createSystemRandom
-- >>> uniformM g :: IO Int
-- ...
--
-- >>> withSystemRandomST $ \g -> uniformM g :: IO Int
-- ...
--
-- Deterministically create generator from given seed using
-- 'initialize' function:
--
-- >>> import Data.Int
-- >>> import qualified Data.Vector.Unboxed as U
-- >>> import System.Random.Stateful
-- >>> g <- initialize $ U.fromList [1,2,3]
-- >>> uniformRM (1,200) g :: IO Int64
-- 101
--
-- Last way is to create generator with fixed seed which could be
-- useful in testing
--
-- >>> g <- create
-- >>> uniformM g :: IO Int
-- -8765701622605876598
--
--
-- == Generation of random numbers
--
-- Recommended way of generating random numbers in simple cases like
-- generating uniformly distributed random number in range or value
-- uniformly distributed in complete type domain is to use
-- 'UniformRange' and 'Uniform' type classes. Note that while small
-- self-contained examples usually require explicit annotations
-- usually result type could be inferred.
--
-- This example simulates 20 throws of fair 6-sided dice:
--
-- >>> g <- create
-- >>> replicateM 20 $ uniformRM (1, 6::Integer) g
-- [3,4,3,1,4,6,1,6,1,4,2,2,3,2,4,2,5,1,3,5]
--
-- For generating full range of possible values one could use
-- 'uniformM'. This example generates 10 random bytes, or equivalently
-- 10 throws of 256-sided dice:
--
-- >>> g <- create
-- >>> replicateM 10 $ uniformM g :: IO [Word8]
-- [209,138,126,150,165,15,69,203,155,146]
--
-- There are special functions for generation of @Doubles@ and @Float
-- in unit interval: 'Random.uniformDouble01M',
-- 'Random.uniformDoublePositive01M', 'Random.uniformFloat01M',
-- 'Random.uniformFloatPositive01M':
--
-- >>> uniformDouble01M =<< create
-- 0.5248103628705498
-- >>> uniformFloat01M =<< create
-- 0.5248104
--
-- For normal distribution and others see modules
-- "System.Random.MWC.Distributions" and
-- "System.Random.MWC.CondensedTable". Note that they could be used
-- with any other generator implementing 'Random.StatefulGen' API
--
-- There're special cases for generating random vectors and
-- bytestrings. For example in order to generate random 10-byte
-- sequences as unboxed vector or bytestring:
--
-- >>> g <- create
-- >>> uniformVector g 10 :: IO (U.Vector Word8)
-- [209,138,126,150,165,15,69,203,155,146]
--
-- >>> import qualified Data.ByteString as BS
-- >>> g <- create
-- >>> BS.unpack <$> uniformByteStringM 10 g
-- [138,242,130,33,209,248,89,134,150,180]
--
-- Note that 'Random.uniformByteStringM' produces different result
-- from 'uniformVector' since it uses PRNG's output more efficiently.
--
--
-- == State handling
--
-- For repeatability, the state of the generator can be snapshotted
-- and replayed using the 'save' and 'restore' functions. Following
-- example shows how to save and restore generator:
--
-- >>> g <- create
-- >>> replicateM_ 10 (uniformM g :: IO Word64)
-- >>> s <- save g
-- >>> uniformM g :: IO Word32
-- 1771812561
-- >>> uniformM =<< restore s :: IO Word32
-- 1771812561
module System.Random.MWC
(
-- * Gen: Pseudo-Random Number Generators
Gen
, create
, initialize
, createSystemSeed
, createSystemRandom
, withSystemRandomST
-- ** Type helpers
-- $typehelp
, GenIO
, GenST
, asGenIO
, asGenST
-- * Variates: uniformly distributed values
, Random.Uniform(..)
, Random.UniformRange(..)
, Variate(..)
, uniformVector
-- * Seed: state management
, Seed
, fromSeed
, toSeed
, save
, restore
-- * Deprecated
, withSystemRandom
-- * References
-- $references
) where
#if defined(__GLASGOW_HASKELL__) && !defined(__HADDOCK__)
#include "MachDeps.h"
#endif
import Control.Monad (ap, liftM, unless)
import Control.Monad.Primitive (PrimMonad, PrimBase, PrimState, unsafePrimToIO, stToPrim)
import Control.Monad.ST (ST,runST)
import Data.Bits ((.&.), (.|.), shiftL, shiftR, xor)
import Data.Int (Int8, Int16, Int32, Int64)
import Data.IORef (IORef, atomicModifyIORef, newIORef)
import Data.Typeable (Typeable)
import Data.Vector.Generic (Vector)
import Data.Word
import Data.Kind
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Generic.Mutable as GM
import qualified Data.Vector.Unboxed as I
import qualified Data.Vector.Unboxed.Mutable as M
import System.IO (hPutStrLn, stderr)
import System.IO.Unsafe (unsafePerformIO)
import qualified Control.Exception as E
import System.Random.MWC.SeedSource
import qualified System.Random.Stateful as Random
-- | NOTE: Consider use of more principled type classes
-- 'Random.Uniform' and 'Random.UniformRange' instead.
--
-- The class of types for which we can generate uniformly
-- distributed random variates.
--
-- The uniform PRNG uses Marsaglia's MWC256 (also known as MWC8222)
-- multiply-with-carry generator, which has a period of 2^8222 and
-- fares well in tests of randomness. It is also extremely fast,
-- between 2 and 3 times faster than the Mersenne Twister.
--
-- /Note/: Marsaglia's PRNG is not known to be cryptographically
-- secure, so you should not use it for cryptographic operations.
class Variate a where
-- | Generate a single uniformly distributed random variate. The
-- range of values produced varies by type:
--
-- * For fixed-width integral types, the type's entire range is
-- used.
--
-- * For floating point numbers, the range (0,1] is used. Zero is
-- explicitly excluded, to allow variates to be used in
-- statistical calculations that require non-zero values
-- (e.g. uses of the 'log' function).
--
-- To generate a 'Float' variate with a range of [0,1), subtract
-- 2**(-33). To do the same with 'Double' variates, subtract
-- 2**(-53).
uniform :: (PrimMonad m) => Gen (PrimState m) -> m a
-- | Generate single uniformly distributed random variable in a
-- given range.
--
-- * For integral types inclusive range is used.
--
-- * For floating point numbers range (a,b] is used if one ignores
-- rounding errors.
uniformR :: (PrimMonad m) => (a,a) -> Gen (PrimState m) -> m a
instance Variate Int8 where
uniform = uniform1 fromIntegral
uniformR a b = uniformRange a b
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Int16 where
uniform = uniform1 fromIntegral
uniformR a b = uniformRange a b
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Int32 where
uniform = uniform1 fromIntegral
uniformR a b = uniformRange a b
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Int64 where
uniform = uniform2 wordsTo64Bit
uniformR a b = uniformRange a b
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Word8 where
uniform = uniform1 fromIntegral
uniformR a b = uniformRange a b
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Word16 where
uniform = uniform1 fromIntegral
uniformR a b = uniformRange a b
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Word32 where
uniform = uniform1 id
uniformR a b = uniformRange a b
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Word64 where
uniform = uniform2 wordsTo64Bit
uniformR a b = uniformRange a b
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Bool where
uniform = uniform1 wordToBool
uniformR (False,True) g = uniform g
uniformR (False,False) _ = return False
uniformR (True,True) _ = return True
uniformR (True,False) g = uniform g
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Float where
uniform = uniform1 wordToFloat
uniformR (x1,x2) = uniform1 (\w -> x1 + (x2-x1) * wordToFloat w)
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Double where
uniform = uniform2 wordsToDouble
uniformR (x1,x2) = uniform2 (\w1 w2 -> x1 + (x2-x1) * wordsToDouble w1 w2)
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Int where
#if WORD_SIZE_IN_BITS == 32
uniform = uniform1 fromIntegral
#elif WORD_SIZE_IN_BITS == 64
uniform = uniform2 wordsTo64Bit
#else
#error "Word size is not 32 nor 64"
#endif
uniformR a b = uniformRange a b
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance Variate Word where
#if WORD_SIZE_IN_BITS == 32
uniform = uniform1 fromIntegral
#elif WORD_SIZE_IN_BITS == 64
uniform = uniform2 wordsTo64Bit
#else
#error "Word size is not 32 nor 64"
#endif
uniformR a b = uniformRange a b
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance (Variate a, Variate b) => Variate (a,b) where
uniform g = (,) `liftM` uniform g `ap` uniform g
uniformR ((x1,y1),(x2,y2)) g = (,) `liftM` uniformR (x1,x2) g `ap` uniformR (y1,y2) g
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance (Variate a, Variate b, Variate c) => Variate (a,b,c) where
uniform g = (,,) `liftM` uniform g `ap` uniform g `ap` uniform g
uniformR ((x1,y1,z1),(x2,y2,z2)) g =
(,,) `liftM` uniformR (x1,x2) g `ap` uniformR (y1,y2) g `ap` uniformR (z1,z2) g
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
instance (Variate a, Variate b, Variate c, Variate d) => Variate (a,b,c,d) where
uniform g = (,,,) `liftM` uniform g `ap` uniform g `ap` uniform g
`ap` uniform g
uniformR ((x1,y1,z1,t1),(x2,y2,z2,t2)) g =
(,,,) `liftM` uniformR (x1,x2) g `ap` uniformR (y1,y2) g `ap`
uniformR (z1,z2) g `ap` uniformR (t1,t2) g
{-# INLINE uniform #-}
{-# INLINE uniformR #-}
wordsTo64Bit :: (Integral a) => Word32 -> Word32 -> a
wordsTo64Bit x y =
fromIntegral ((fromIntegral x `shiftL` 32) .|. fromIntegral y :: Word64)
{-# INLINE wordsTo64Bit #-}
wordToBool :: Word32 -> Bool
wordToBool i = (i .&. 1) /= 0
{-# INLINE wordToBool #-}
wordToFloat :: Word32 -> Float
wordToFloat x = (fromIntegral i * m_inv_32) + 0.5 + m_inv_33
where m_inv_33 = 1.16415321826934814453125e-10
m_inv_32 = 2.3283064365386962890625e-10
i = fromIntegral x :: Int32
{-# INLINE wordToFloat #-}
wordsToDouble :: Word32 -> Word32 -> Double
wordsToDouble x y = (fromIntegral u * m_inv_32 + (0.5 + m_inv_53) +
fromIntegral (v .&. 0xFFFFF) * m_inv_52)
where m_inv_52 = 2.220446049250313080847263336181640625e-16
m_inv_53 = 1.1102230246251565404236316680908203125e-16
m_inv_32 = 2.3283064365386962890625e-10
u = fromIntegral x :: Int32
v = fromIntegral y :: Int32
{-# INLINE wordsToDouble #-}
-- | State of the pseudo-random number generator. It uses mutable
-- state so same generator shouldn't be used from the different
-- threads simultaneously.
newtype Gen s = Gen (M.MVector s Word32)
-- | A shorter name for PRNG state in the 'IO' monad.
type GenIO = Gen (PrimState IO)
-- | A shorter name for PRNG state in the 'ST' monad.
type GenST s = Gen (PrimState (ST s))
-- | Constrain the type of an action to run in the 'IO' monad.
asGenIO :: (GenIO -> IO a) -> (GenIO -> IO a)
asGenIO = id
-- | Constrain the type of an action to run in the 'ST' monad.
asGenST :: (GenST s -> ST s a) -> (GenST s -> ST s a)
asGenST = id
ioff, coff :: Int
ioff = 256
coff = 257
-- | Create a generator for variates using a fixed seed.
create :: PrimMonad m => m (Gen (PrimState m))
create = initialize defaultSeed
{-# INLINE create #-}
-- | Create a generator for variates using the given seed, of which up
-- to 256 elements will be used. For arrays of less than 256
-- elements, part of the default seed will be used to finish
-- initializing the generator's state.
--
-- Examples:
--
-- > initialize (singleton 42)
--
-- > initialize (fromList [4, 8, 15, 16, 23, 42])
--
-- If a seed contains fewer than 256 elements, it is first used
-- verbatim, then its elements are 'xor'ed against elements of the
-- default seed until 256 elements are reached.
--
-- If a seed contains exactly 258 elements, then the last two elements
-- are used to set the generator's initial state. This allows for
-- complete generator reproducibility, so that e.g. @gen' == gen@ in
-- the following example:
--
-- @gen' <- 'initialize' . 'fromSeed' =<< 'save'@
--
-- In the MWC algorithm, the /carry/ value must be strictly smaller than the
-- multiplicator (see https://en.wikipedia.org/wiki/Multiply-with-carry).
-- Hence, if a seed contains exactly 258 elements, the /carry/ value, which is
-- the last of the 258 values, is moduloed by the multiplicator.
--
-- Note that if the /first/ carry value is strictly smaller than the multiplicator,
-- all subsequent carry values are also strictly smaller than the multiplicator
-- (a proof of this is in the comments of the code of 'uniformWord32'), hence
-- when restoring a saved state, we have the guarantee that moduloing the saved
-- carry won't modify its value.
initialize :: (PrimMonad m, Vector v Word32) =>
v Word32 -> m (Gen (PrimState m))
initialize seed = do
q <- M.unsafeNew 258
fill q
if fini == 258
then do
M.unsafeWrite q ioff $ G.unsafeIndex seed ioff .&. 255
M.unsafeWrite q coff $ G.unsafeIndex seed coff `mod` fromIntegral aa
else do
M.unsafeWrite q ioff 255
M.unsafeWrite q coff 362436
return (Gen q)
where fill q = go 0 where
go i | i == 256 = return ()
| otherwise = M.unsafeWrite q i s >> go (i+1)
where s | i >= fini = if fini == 0
then G.unsafeIndex defaultSeed i
else G.unsafeIndex defaultSeed i `xor`
G.unsafeIndex seed (i `mod` fini)
| otherwise = G.unsafeIndex seed i
fini = G.length seed
{-# INLINE initialize #-}
-- | An immutable snapshot of the state of a 'Gen'.
newtype Seed = Seed (I.Vector Word32)
deriving (Eq, Show, Typeable)
-- | Convert seed into vector.
fromSeed :: Seed -> I.Vector Word32
fromSeed (Seed v) = v
-- | @since 0.15.0.0
instance (s ~ PrimState m, PrimMonad m) => Random.StatefulGen (Gen s) m where
uniformWord32R u = uniformR (0, u)
{-# INLINE uniformWord32R #-}
uniformWord64R u = uniformR (0, u)
{-# INLINE uniformWord64R #-}
uniformWord8 = uniform
{-# INLINE uniformWord8 #-}
uniformWord16 = uniform
{-# INLINE uniformWord16 #-}
uniformWord32 = uniform
{-# INLINE uniformWord32 #-}
uniformWord64 = uniform
{-# INLINE uniformWord64 #-}
uniformShortByteString n g = stToPrim (Random.genShortByteStringST n (uniform g))
{-# INLINE uniformShortByteString #-}
-- | @since 0.15.0.0
instance PrimMonad m => Random.FrozenGen Seed m where
type MutableGen Seed m = Gen (PrimState m)
thawGen = restore
freezeGen = save
-- | Convert vector to 'Seed'. It acts similarly to 'initialize' and
-- will accept any vector. If you want to pass seed immediately to
-- restore you better call initialize directly since following law holds:
--
-- > restore (toSeed v) = initialize v
toSeed :: (Vector v Word32) => v Word32 -> Seed
toSeed v = Seed $ I.create $ do { Gen q <- initialize v; return q }
-- | Save the state of a 'Gen', for later use by 'restore'.
save :: PrimMonad m => Gen (PrimState m) -> m Seed
save (Gen q) = Seed `liftM` G.freeze q
{-# INLINE save #-}
-- | Create a new 'Gen' that mirrors the state of a saved 'Seed'.
restore :: PrimMonad m => Seed -> m (Gen (PrimState m))
restore (Seed s) = Gen `liftM` G.thaw s
{-# INLINE restore #-}
-- $seeding
--
-- Library provides several functions allowing to intialize generator
-- using OS-provided randomness: \"@\/dev\/urandom@\" on Unix-like
-- systems or @RtlGenRandom@ on Windows. This is a somewhat expensive
-- function, and is intended to be called only occasionally (e.g. once
-- per thread). You should use the `Gen` it creates to generate many
-- random numbers.
createSystemRandomList :: IO [Word32]
createSystemRandomList = do
acquireSeedSystem 256 `E.catch` \(_::E.IOException) -> do
seen <- atomicModifyIORef seedCreatetionWarned ((,) True)
unless seen $ E.handle (\(_::E.IOException) -> return ()) $ do
hPutStrLn stderr $ "Warning: Couldn't use randomness source " ++ randomSourceName
hPutStrLn stderr ("Warning: using system clock for seed instead " ++
"(quality will be lower)")
acquireSeedTime
seedCreatetionWarned :: IORef Bool
seedCreatetionWarned = unsafePerformIO $ newIORef False
{-# NOINLINE seedCreatetionWarned #-}
-- | Generate random seed for generator using system's fast source of
-- pseudo-random numbers.
--
-- @since 0.15.0.0
createSystemSeed :: IO Seed
createSystemSeed = do
seed <- createSystemRandomList
return $! toSeed $ I.fromList seed
-- | Seed a PRNG with data from the system's fast source of
-- pseudo-random numbers.
createSystemRandom :: IO GenIO
createSystemRandom = initialize . I.fromList =<< createSystemRandomList
-- | Seed PRNG with data from the system's fast source of
-- pseudo-random numbers and execute computation in ST monad.
--
-- @since 0.15.0.0
withSystemRandomST :: (forall s. Gen s -> ST s a) -> IO a
withSystemRandomST act = do
seed <- createSystemSeed
return $! runST $ act =<< restore seed
-- | Seed a PRNG with data from the system's fast source of
-- pseudo-random numbers, then run the given action.
--
-- This function is unsafe and for example allows STRefs or any
-- other mutable data structure to escape scope:
--
-- >>> ref <- withSystemRandom $ \_ -> newSTRef 1
-- >>> withSystemRandom $ \_ -> modifySTRef ref succ >> readSTRef ref
-- 2
-- >>> withSystemRandom $ \_ -> modifySTRef ref succ >> readSTRef ref
-- 3
withSystemRandom :: PrimBase m
=> (Gen (PrimState m) -> m a) -> IO a
withSystemRandom act = do
seed <- createSystemSeed
unsafePrimToIO $ act =<< restore seed
{-# DEPRECATED withSystemRandom "Use withSystemRandomST or createSystemSeed or createSystemRandom instead" #-}
-- | Compute the next index into the state pool. This is simply
-- addition modulo 256.
nextIndex :: Integral a => a -> Int
nextIndex i = fromIntegral j
where j = fromIntegral (i+1) :: Word8
{-# INLINE nextIndex #-}
-- The multiplicator : 0x5BCF5AB2
--
-- Eventhough it is a 'Word64', it is important for the correctness of the proof
-- on carry value that it is /not/ greater than maxBound 'Word32'.
aa :: Word64
aa = 1540315826
{-# INLINE aa #-}
uniformWord32 :: PrimMonad m => Gen (PrimState m) -> m Word32
-- NOTE [Carry value]
uniformWord32 (Gen q) = do
i <- nextIndex `liftM` M.unsafeRead q ioff
c <- fromIntegral `liftM` M.unsafeRead q coff
qi <- fromIntegral `liftM` M.unsafeRead q i
let t = aa * qi + c
c' = fromIntegral (t `shiftR` 32)
x = fromIntegral t + c'
(# x', c'' #) | x < c' = (# x + 1, c' + 1 #)
| otherwise = (# x, c' #)
M.unsafeWrite q i x'
M.unsafeWrite q ioff (fromIntegral i)
M.unsafeWrite q coff c''
return x'
{-# INLINE uniformWord32 #-}
uniform1 :: PrimMonad m => (Word32 -> a) -> Gen (PrimState m) -> m a
uniform1 f gen = do
i <- uniformWord32 gen
return $! f i
{-# INLINE uniform1 #-}
uniform2 :: PrimMonad m => (Word32 -> Word32 -> a) -> Gen (PrimState m) -> m a
uniform2 f (Gen q) = do
i <- nextIndex `liftM` M.unsafeRead q ioff
let j = nextIndex i
c <- fromIntegral `liftM` M.unsafeRead q coff
qi <- fromIntegral `liftM` M.unsafeRead q i
qj <- fromIntegral `liftM` M.unsafeRead q j
let t = aa * qi + c
c' = fromIntegral (t `shiftR` 32)
x = fromIntegral t + c'
(# x', c'' #) | x < c' = (# x + 1, c' + 1 #)
| otherwise = (# x, c' #)
u = aa * qj + fromIntegral c''
d' = fromIntegral (u `shiftR` 32)
y = fromIntegral u + d'
(# y', d'' #) | y < d' = (# y + 1, d' + 1 #)
| otherwise = (# y, d' #)
M.unsafeWrite q i x'
M.unsafeWrite q j y'
M.unsafeWrite q ioff (fromIntegral j)
M.unsafeWrite q coff d''
return $! f x' y'
{-# INLINE uniform2 #-}
-- Type family for fixed size integrals. For signed data types it's
-- its unsigned counterpart with same size and for unsigned data types
-- it's same type
type family Unsigned a :: Type
type instance Unsigned Int8 = Word8
type instance Unsigned Int16 = Word16
type instance Unsigned Int32 = Word32
type instance Unsigned Int64 = Word64
type instance Unsigned Word8 = Word8
type instance Unsigned Word16 = Word16
type instance Unsigned Word32 = Word32
type instance Unsigned Word64 = Word64
type instance Unsigned Int = Word
type instance Unsigned Word = Word
-- Subtract two numbers under assumption that x>=y and store result in
-- unsigned data type of same size
sub :: (Integral a, Integral (Unsigned a)) => a -> a -> Unsigned a
sub x y = fromIntegral x - fromIntegral y
{-# INLINE sub #-}
add :: (Integral a, Integral (Unsigned a)) => a -> Unsigned a -> a
add m x = m + fromIntegral x
{-# INLINE add #-}
-- Generate uniformly distributed value in inclusive range.
--
-- NOTE: This function must be fully applied. Otherwise it won't be
-- inlined, which will cause a severe performance loss.
--
-- > uniformR = uniformRange -- won't be inlined
-- > uniformR a b = uniformRange a b -- will be inlined
uniformRange :: ( PrimMonad m
, Integral a, Bounded a, Variate a
, Integral (Unsigned a), Bounded (Unsigned a), Variate (Unsigned a))
=> (a,a) -> Gen (PrimState m) -> m a
uniformRange (x1,x2) g
| n == 0 = uniform g -- Abuse overflow in unsigned types
| otherwise = loop
where
-- Allow ranges where x2<x1
(# i, j #) | x1 < x2 = (# x1, x2 #)
| otherwise = (# x2, x1 #)
n = 1 + sub j i
buckets = maxBound `div` n
maxN = buckets * n
loop = do x <- uniform g
if x < maxN then return $! add i (x `div` buckets)
else loop
{-# INLINE uniformRange #-}
-- | Generate a vector of pseudo-random variates. This is not
-- necessarily faster than invoking 'uniform' repeatedly in a loop,
-- but it may be more convenient to use in some situations.
uniformVector
:: (PrimMonad m, Random.StatefulGen g m, Random.Uniform a, Vector v a)
=> g -> Int -> m (v a)
-- NOTE: We use in-place mutation in order to generate vector instead
-- of generateM because latter will go though intermediate list until
-- we're working in IO/ST monad
--
-- See: https://github.com/haskell/vector/issues/208 for details
uniformVector gen n = do
mu <- GM.unsafeNew n
let go !i | i < n = Random.uniformM gen >>= GM.unsafeWrite mu i >> go (i+1)
| otherwise = G.unsafeFreeze mu
go 0
{-# INLINE uniformVector #-}
-- This is default seed for the generator and used when no seed is
-- specified or seed is only partial. It's not known how it was
-- generated but it looks random enough
defaultSeed :: I.Vector Word32
defaultSeed = I.fromList [
0x7042e8b3, 0x06f7f4c5, 0x789ea382, 0x6fb15ad8, 0x54f7a879, 0x0474b184,
0xb3f8f692, 0x4114ea35, 0xb6af0230, 0xebb457d2, 0x47693630, 0x15bc0433,
0x2e1e5b18, 0xbe91129c, 0xcc0815a0, 0xb1260436, 0xd6f605b1, 0xeaadd777,
0x8f59f791, 0xe7149ed9, 0x72d49dd5, 0xd68d9ded, 0xe2a13153, 0x67648eab,
0x48d6a1a1, 0xa69ab6d7, 0x236f34ec, 0x4e717a21, 0x9d07553d, 0x6683a701,
0x19004315, 0x7b6429c5, 0x84964f99, 0x982eb292, 0x3a8be83e, 0xc1df1845,
0x3cf7b527, 0xb66a7d3f, 0xf93f6838, 0x736b1c85, 0x5f0825c1, 0x37e9904b,
0x724cd7b3, 0xfdcb7a46, 0xfdd39f52, 0x715506d5, 0xbd1b6637, 0xadabc0c0,
0x219037fc, 0x9d71b317, 0x3bec717b, 0xd4501d20, 0xd95ea1c9, 0xbe717202,
0xa254bd61, 0xd78a6c5b, 0x043a5b16, 0x0f447a25, 0xf4862a00, 0x48a48b75,
0x1e580143, 0xd5b6a11b, 0x6fb5b0a4, 0x5aaf27f9, 0x668bcd0e, 0x3fdf18fd,
0x8fdcec4a, 0x5255ce87, 0xa1b24dbf, 0x3ee4c2e1, 0x9087eea2, 0xa4131b26,
0x694531a5, 0xa143d867, 0xd9f77c03, 0xf0085918, 0x1e85071c, 0x164d1aba,
0xe61abab5, 0xb8b0c124, 0x84899697, 0xea022359, 0x0cc7fa0c, 0xd6499adf,
0x746da638, 0xd9e5d200, 0xefb3360b, 0x9426716a, 0xabddf8c2, 0xdd1ed9e4,
0x17e1d567, 0xa9a65000, 0x2f37dbc5, 0x9a4b8fd5, 0xaeb22492, 0x0ebe8845,
0xd89dd090, 0xcfbb88c6, 0xb1325561, 0x6d811d90, 0x03aa86f4, 0xbddba397,
0x0986b9ed, 0x6f4cfc69, 0xc02b43bc, 0xee916274, 0xde7d9659, 0x7d3afd93,
0xf52a7095, 0xf21a009c, 0xfd3f795e, 0x98cef25b, 0x6cb3af61, 0x6fa0e310,
0x0196d036, 0xbc198bca, 0x15b0412d, 0xde454349, 0x5719472b, 0x8244ebce,
0xee61afc6, 0xa60c9cb5, 0x1f4d1fd0, 0xe4fb3059, 0xab9ec0f9, 0x8d8b0255,
0x4e7430bf, 0x3a22aa6b, 0x27de22d3, 0x60c4b6e6, 0x0cf61eb3, 0x469a87df,
0xa4da1388, 0xf650f6aa, 0x3db87d68, 0xcdb6964c, 0xb2649b6c, 0x6a880fa9,
0x1b0c845b, 0xe0af2f28, 0xfc1d5da9, 0xf64878a6, 0x667ca525, 0x2114b1ce,
0x2d119ae3, 0x8d29d3bf, 0x1a1b4922, 0x3132980e, 0xd59e4385, 0x4dbd49b8,
0x2de0bb05, 0xd6c96598, 0xb4c527c3, 0xb5562afc, 0x61eeb602, 0x05aa192a,
0x7d127e77, 0xc719222d, 0xde7cf8db, 0x2de439b8, 0x250b5f1a, 0xd7b21053,
0xef6c14a1, 0x2041f80f, 0xc287332e, 0xbb1dbfd3, 0x783bb979, 0x9a2e6327,
0x6eb03027, 0x0225fa2f, 0xa319bc89, 0x864112d4, 0xfe990445, 0xe5e2e07c,
0xf7c6acb8, 0x1bc92142, 0x12e9b40e, 0x2979282d, 0x05278e70, 0xe160ba4c,
0xc1de0909, 0x458b9bf4, 0xbfce9c94, 0xa276f72a, 0x8441597d, 0x67adc2da,
0x6162b854, 0x7f9b2f4a, 0x0d995b6b, 0x193b643d, 0x399362b3, 0x8b653a4b,
0x1028d2db, 0x2b3df842, 0x6eecafaf, 0x261667e9, 0x9c7e8cda, 0x46063eab,
0x7ce7a3a1, 0xadc899c9, 0x017291c4, 0x528d1a93, 0x9a1ee498, 0xbb7d4d43,
0x7837f0ed, 0x34a230cc, 0x614a628d, 0xb03f93b8, 0xd72e3b08, 0x604c98db,
0x3cfacb79, 0x8b81646a, 0xc0f082fa, 0xd1f92388, 0xe5a91e39, 0xf95c756d,
0x1177742f, 0xf8819323, 0x5c060b80, 0x96c1cd8f, 0x47d7b440, 0xbbb84197,
0x35f749cc, 0x95b0e132, 0x8d90ad54, 0x5c3f9423, 0x4994005b, 0xb58f53b9,
0x32df7348, 0x60f61c29, 0x9eae2f32, 0x85a3d398, 0x3b995dd4, 0x94c5e460,
0x8e54b9f3, 0x87bc6e2a, 0x90bbf1ea, 0x55d44719, 0x2cbbfe6e, 0x439d82f0,
0x4eb3782d, 0xc3f1e669, 0x61ff8d9e, 0x0909238d, 0xef406165, 0x09c1d762,
0x705d184f, 0x188f2cc4, 0x9c5aa12a, 0xc7a5d70e, 0xbc78cb1b, 0x1d26ae62,
0x23f96ae3, 0xd456bf32, 0xe4654f55, 0x31462bd8 ]
{-# NOINLINE defaultSeed #-}
-- $references
--
-- * Marsaglia, G. (2003) Seeds for random number generators.
-- /Communications of the ACM/ 46(5):90–93.
-- <http://doi.acm.org/10.1145/769800.769827>
--
-- * Doornik, J.A. (2007) Conversion of high-period random numbers to
-- floating point.
-- /ACM Transactions on Modeling and Computer Simulation/ 17(1).
-- <http://www.doornik.com/research/randomdouble.pdf>
-- $typehelp
--
-- The functions in this package are deliberately written for
-- flexibility, and will run in both the 'IO' and 'ST' monads.
--
-- This can defeat the compiler's ability to infer a principal type in
-- simple (and common) cases. For instance, we would like the
-- following to work cleanly:
--
-- > import System.Random.MWC
-- > import Data.Vector.Unboxed
-- >
-- > main = do
-- > v <- withSystemRandom $ \gen -> uniformVector gen 20
-- > print (v :: Vector Int)
--
-- Unfortunately, the compiler cannot tell what monad 'uniformVector'
-- should execute in. The \"fix\" of adding explicit type annotations
-- is not pretty:
--
-- > {-# LANGUAGE ScopedTypeVariables #-}
-- >
-- > import Control.Monad.ST
-- >
-- > main = do
-- > vs <- withSystemRandom $
-- > \(gen::GenST s) -> uniformVector gen 20 :: ST s (Vector Int)
-- > print vs
--
-- As a more readable alternative, this library provides 'asGenST' and
-- 'asGenIO' to constrain the types appropriately. We can get rid of
-- the explicit type annotations as follows:
--
-- > main = do
-- > vs <- withSystemRandom . asGenST $ \gen -> uniformVector gen 20
-- > print (vs :: Vector Int)
--
-- This is almost as compact as the original code that the compiler
-- rejected.
-- $setup
--
-- >>> import Control.Monad
-- >>> import Data.Word
-- >>> import Data.STRef
-- >>> :set -Wno-deprecations
-- NOTE [Carry value]
-- ------------------
-- This is proof of statement:
--
-- > if the carry value is strictly smaller than the multiplicator,
-- > the next carry value is also strictly smaller than the multiplicator.
--
-- Even though the proof is written in terms of the actual value of the
-- multiplicator, it holds for any multiplicator value /not/ greater
-- than maxBound 'Word32'
--
-- (In the code, the multiplicator is aa, the carry value is c,
-- the next carry value is c''.)
--
-- So we'll assume that c < aa, and show that c'' < aa :
--
-- by definition, aa = 0x5BCF5AB2, qi <= 0xFFFFFFFF (because it is a 'Word32')
--
-- Then we get following:
--
-- aa*qi <= 0x5BCF5AB200000000 - 0x5BCF5AB2.
-- t < 0x5BCF5AB200000000 (because t = aa * qi + c and c < 0x5BCF5AB2)
-- t <= 0x5BCF5AB1FFFFFFFF
-- c' < 0x5BCF5AB1
-- c'' < 0x5BCF5AB2,
-- c'' < aa, which is what we wanted to prove.
|