1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
|
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE BangPatterns, CPP, GADTs, FlexibleContexts, ScopedTypeVariables #-}
-- |
-- Module : System.Random.MWC.Distributions
-- Copyright : (c) 2012 Bryan O'Sullivan
-- License : BSD3
--
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : portable
--
-- Pseudo-random number generation for non-uniform distributions.
module System.Random.MWC.Distributions
(
-- * Variates: non-uniformly distributed values
-- ** Continuous distributions
normal
, standard
, exponential
, truncatedExp
, gamma
, chiSquare
, beta
-- ** Discrete distribution
, categorical
, logCategorical
, geometric0
, geometric1
, bernoulli
, binomial
-- ** Multivariate
, dirichlet
-- * Permutations
, uniformPermutation
, uniformShuffle
, uniformShuffleM
-- * References
-- $references
) where
import Prelude hiding (mapM)
import Control.Monad (liftM)
import Control.Monad.Primitive (PrimMonad, PrimState)
import Data.Bits ((.&.))
import Data.Foldable (foldl')
#if !MIN_VERSION_base(4,8,0)
import Data.Traversable (Traversable)
#endif
import Data.Traversable (mapM)
import Data.Word (Word32)
import System.Random.Stateful (StatefulGen(..),Uniform(..),UniformRange(..),uniformDoublePositive01M)
import qualified Data.Vector.Unboxed as I
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Generic.Mutable as M
import Numeric.SpecFunctions (logFactorial)
-- Unboxed 2-tuple
data T = T {-# UNPACK #-} !Double {-# UNPACK #-} !Double
-- | Generate a normally distributed random variate with given mean
-- and standard deviation.
normal :: StatefulGen g m
=> Double -- ^ Mean
-> Double -- ^ Standard deviation
-> g
-> m Double
{-# INLINE normal #-}
normal m s gen = do
x <- standard gen
return $! m + s * x
-- | Generate a normally distributed random variate with zero mean and
-- unit variance.
--
-- The implementation uses Doornik's modified ziggurat algorithm.
-- Compared to the ziggurat algorithm usually used, this is slower,
-- but generates more independent variates that pass stringent tests
-- of randomness.
standard :: StatefulGen g m => g -> m Double
{-# INLINE standard #-}
standard gen = loop
where
loop = do
u <- (subtract 1 . (*2)) `liftM` uniformDoublePositive01M gen
ri <- uniformM gen
let i = fromIntegral ((ri :: Word32) .&. 127)
bi = I.unsafeIndex blocks i
bj = I.unsafeIndex blocks (i+1)
case () of
_| abs u < I.unsafeIndex ratios i -> return $! u * bi
| i == 0 -> normalTail (u < 0)
| otherwise -> do
let x = u * bi
xx = x * x
d = exp (-0.5 * (bi * bi - xx))
e = exp (-0.5 * (bj * bj - xx))
c <- uniformDoublePositive01M gen
if e + c * (d - e) < 1
then return x
else loop
normalTail neg = tailing
where tailing = do
x <- ((/rNorm) . log) `liftM` uniformDoublePositive01M gen
y <- log `liftM` uniformDoublePositive01M gen
if y * (-2) < x * x
then tailing
else return $! if neg then x - rNorm else rNorm - x
-- Constants used by standard/normal. They are floated to the top
-- level to avoid performance regression (Bug #16) when blocks/ratios
-- are recalculated on each call to standard/normal. It's also
-- somewhat difficult to trigger reliably.
blocks :: I.Vector Double
blocks = (`I.snoc` 0) . I.cons (v/f) . I.cons rNorm . I.unfoldrN 126 go $! T rNorm f
where
go (T b g) = let !u = T h (exp (-0.5 * h * h))
h = sqrt (-2 * log (v / b + g))
in Just (h, u)
v = 9.91256303526217e-3
f = exp (-0.5 * rNorm * rNorm)
{-# NOINLINE blocks #-}
rNorm :: Double
rNorm = 3.442619855899
ratios :: I.Vector Double
ratios = I.zipWith (/) (I.tail blocks) blocks
{-# NOINLINE ratios #-}
-- | Generate an exponentially distributed random variate.
exponential :: StatefulGen g m
=> Double -- ^ Scale parameter
-> g -- ^ Generator
-> m Double
{-# INLINE exponential #-}
exponential b gen = do
x <- uniformDoublePositive01M gen
return $! - log x / b
-- | Generate truncated exponentially distributed random variate.
truncatedExp :: StatefulGen g m
=> Double -- ^ Scale parameter
-> (Double,Double) -- ^ Range to which distribution is
-- truncated. Values may be negative.
-> g -- ^ Generator.
-> m Double
{-# INLINE truncatedExp #-}
truncatedExp scale (a,b) gen = do
-- We shift a to 0 and then generate distribution truncated to [0,b-a]
-- It's easier
let delta = b - a
p <- uniformDoublePositive01M gen
return $! a - log ( (1 - p) + p*exp(-scale*delta)) / scale
-- | Random variate generator for gamma distribution.
gamma :: (StatefulGen g m)
=> Double -- ^ Shape parameter
-> Double -- ^ Scale parameter
-> g -- ^ Generator
-> m Double
{-# INLINE gamma #-}
gamma a b gen
| a <= 0 = pkgError "gamma" "negative alpha parameter"
| otherwise = mainloop
where
mainloop = do
T x v <- innerloop
u <- uniformDoublePositive01M gen
let cont = u > 1 - 0.331 * sqr (sqr x)
&& log u > 0.5 * sqr x + a1 * (1 - v + log v) -- Rarely evaluated
case () of
_| cont -> mainloop
| a >= 1 -> return $! a1 * v * b
| otherwise -> do y <- uniformDoublePositive01M gen
return $! y ** (1 / a) * a1 * v * b
-- inner loop
innerloop = do
x <- standard gen
case 1 + a2*x of
v | v <= 0 -> innerloop
| otherwise -> return $! T x (v*v*v)
-- constants
a' = if a < 1 then a + 1 else a
a1 = a' - 1/3
a2 = 1 / sqrt(9 * a1)
-- | Random variate generator for the chi square distribution.
chiSquare :: StatefulGen g m
=> Int -- ^ Number of degrees of freedom
-> g -- ^ Generator
-> m Double
{-# INLINE chiSquare #-}
chiSquare n gen
| n <= 0 = pkgError "chiSquare" "number of degrees of freedom must be positive"
| otherwise = do x <- gamma (0.5 * fromIntegral n) 1 gen
return $! 2 * x
-- | Random variate generator for the geometric distribution,
-- computing the number of failures before success. Distribution's
-- support is [0..].
geometric0 :: StatefulGen g m
=> Double -- ^ /p/ success probability lies in (0,1]
-> g -- ^ Generator
-> m Int
{-# INLINE geometric0 #-}
geometric0 p gen
| p == 1 = return 0
| p > 0 && p < 1 = do q <- uniformDoublePositive01M gen
-- FIXME: We want to use log1p here but it will
-- introduce dependency on math-functions.
return $! floor $ log q / log (1 - p)
| otherwise = pkgError "geometric0" "probability out of [0,1] range"
-- | Random variate generator for geometric distribution for number of
-- trials. Distribution's support is [1..] (i.e. just 'geometric0'
-- shifted by 1).
geometric1 :: StatefulGen g m
=> Double -- ^ /p/ success probability lies in (0,1]
-> g -- ^ Generator
-> m Int
{-# INLINE geometric1 #-}
geometric1 p gen = do n <- geometric0 p gen
return $! n + 1
-- | Random variate generator for Beta distribution
beta :: StatefulGen g m
=> Double -- ^ alpha (>0)
-> Double -- ^ beta (>0)
-> g -- ^ Generator
-> m Double
{-# INLINE beta #-}
beta a b gen = do
x <- gamma a 1 gen
y <- gamma b 1 gen
return $! x / (x+y)
-- | Random variate generator for Dirichlet distribution
dirichlet :: (StatefulGen g m, Traversable t)
=> t Double -- ^ container of parameters
-> g -- ^ Generator
-> m (t Double)
{-# INLINE dirichlet #-}
dirichlet t gen = do
t' <- mapM (\x -> gamma x 1 gen) t
let total = foldl' (+) 0 t'
return $ fmap (/total) t'
-- | Random variate generator for Bernoulli distribution
bernoulli :: StatefulGen g m
=> Double -- ^ Probability of success (returning True)
-> g -- ^ Generator
-> m Bool
{-# INLINE bernoulli #-}
bernoulli p gen = (<p) `liftM` uniformDoublePositive01M gen
-- | Random variate generator for categorical distribution.
--
-- Note that if you need to generate a lot of variates functions
-- "System.Random.MWC.CondensedTable" will offer better
-- performance. If only few is needed this function will faster
-- since it avoids costs of setting up table.
categorical :: (StatefulGen g m, G.Vector v Double)
=> v Double -- ^ List of weights [>0]
-> g -- ^ Generator
-> m Int
{-# INLINE categorical #-}
categorical v gen
| G.null v = pkgError "categorical" "empty weights!"
| otherwise = do
let cv = G.scanl1' (+) v
p <- (G.last cv *) `liftM` uniformDoublePositive01M gen
return $! case G.findIndex (>=p) cv of
Just i -> i
Nothing -> pkgError "categorical" "bad weights!"
-- | Random variate generator for categorical distribution where the
-- weights are in the log domain. It's implemented in terms of
-- 'categorical'.
logCategorical :: (StatefulGen g m, G.Vector v Double)
=> v Double -- ^ List of logarithms of weights
-> g -- ^ Generator
-> m Int
{-# INLINE logCategorical #-}
logCategorical v gen
| G.null v = pkgError "logCategorical" "empty weights!"
| otherwise = categorical (G.map (exp . subtract m) v) gen
where
m = G.maximum v
-- | Random variate generator for uniformly distributed permutations.
-- It returns random permutation of vector /[0 .. n-1]/.
--
-- This is the Fisher-Yates shuffle
uniformPermutation :: forall g m v. (StatefulGen g m, PrimMonad m, G.Vector v Int)
=> Int
-> g
-> m (v Int)
{-# INLINE uniformPermutation #-}
uniformPermutation n gen
| n < 0 = pkgError "uniformPermutation" "size must be >=0"
| otherwise = uniformShuffle (G.generate n id :: v Int) gen
-- | Random variate generator for a uniformly distributed shuffle (all
-- shuffles are equiprobable) of a vector. It uses Fisher-Yates
-- shuffle algorithm.
uniformShuffle :: (StatefulGen g m, PrimMonad m, G.Vector v a)
=> v a
-> g
-> m (v a)
{-# INLINE uniformShuffle #-}
uniformShuffle vec gen
| G.length vec <= 1 = return vec
| otherwise = do
mvec <- G.thaw vec
uniformShuffleM mvec gen
G.unsafeFreeze mvec
-- | In-place uniformly distributed shuffle (all shuffles are
-- equiprobable)of a vector.
uniformShuffleM :: (StatefulGen g m, PrimMonad m, M.MVector v a)
=> v (PrimState m) a
-> g
-> m ()
{-# INLINE uniformShuffleM #-}
uniformShuffleM vec gen
| M.length vec <= 1 = return ()
| otherwise = loop 0
where
n = M.length vec
lst = n-1
loop i | i == lst = return ()
| otherwise = do j <- uniformRM (i,lst) gen
M.unsafeSwap vec i j
loop (i+1)
sqr :: Double -> Double
sqr x = x * x
{-# INLINE sqr #-}
pkgError :: String -> String -> a
pkgError func msg = error $ "System.Random.MWC.Distributions." ++ func ++
": " ++ msg
-- | Random variate generator for Binomial distribution. Will throw
-- exception when parameters are out range.
--
-- The probability of getting exactly k successes in n trials is
-- given by the probability mass function:
--
-- \[
-- f(k;n,p) = \Pr(X = k) = \binom n k p^k(1-p)^{n-k}
-- \]
binomial :: forall g m . StatefulGen g m
=> Int -- ^ Number of trials, must be positive.
-> Double -- ^ Probability of success \(p \in [0,1]\)
-> g -- ^ Generator
-> m Int
{-# INLINE binomial #-}
binomial n p gen
| n <= 0 = pkgError "binomial" "number of trials must be positive"
| p < 0.0 || p > 1.0 = pkgError "binomial" "probability must be >= 0 and <= 1"
| p == 0.0 = return 0
| p == 1.0 = return n
| p <= 0.5 = if
| fromIntegral n * p < inv_thr -> binomialInv n p gen
| otherwise -> binomialTPE n p gen
| p > 0.5 = do
ix <- case 1 - p of
p' | fromIntegral n * p' < inv_thr -> binomialInv n p' gen
| otherwise -> binomialTPE n p' gen
pure $! n - ix
-- Reachable when p is NaN
| otherwise = pkgError "binomial" "probability must be >= 0 and <= 1"
where
-- Threshold for preferring the BINV algorithm / inverse cdf
-- logic. The paper suggests 10, Ranlib uses 30, R uses 30, Rust uses
-- 10 and GSL uses 14.
inv_thr = 10
-- Binomial-Triangle-Parallelogram-Exponential algorithm (BTPE)
-- described in Kachitvichyanukul1988
binomialTPE :: forall g m . StatefulGen g m => Int -> Double -> g -> m Int
{-# INLINE binomialTPE #-}
binomialTPE n p g = loop
where
-- Main accept/reject loop
loop = do
u <- uniformRM (0.0, p4) g
v <- uniformDoublePositive01M g
selectArea u v
-- Acceptance / rejection of sample [step 5]
acceptReject :: Int -> Double -> m Int
acceptReject !ix !v
| var <= accept = return ix
| otherwise = loop
where
var = log v
accept = logFactorial bigM + logFactorial (n - bigM) -
logFactorial ix - logFactorial (n - ix) +
fromIntegral (ix - bigM) * log (p / q)
-- Select area to be used [Steps 1-4]
selectArea :: Double -> Double -> m Int
selectArea !u !v
-- Triangular region
| u <= p1 = return $! floor $ xm - p1 * v + u
-- Parallelogram region
| u <= p2 = do let x = xl + (u - p1) / c
w = v * c + 1.0 - abs (x - xm) / p1
if w > 1 || w <= 0
then loop
else do let ix = floor x
acceptReject ix w
-- Left tail
| u <= p3 = case floor $ xl + log v / lambdaL of
ix | ix < 0 -> loop
| otherwise -> do let w = v * (u - p2) * lambdaL
acceptReject ix w
-- Right tail
| otherwise = case floor $ xr - log v / lambdaR of
ix | ix > n -> loop
| otherwise -> do let w = v * (u - p3) * lambdaR
acceptReject ix w
----------------------------------------
-- Constants used in algorithm. See [Step 0]
q = 1 - p
np = fromIntegral n * p
ffm = np + p
bigM = floor ffm
-- Half integer mean (tip of triangle)
xm = fromIntegral bigM + 0.5
-- p1: the distance to the left and right edges of the triangle
-- region below the target distribution; since height=1, also:
-- area of region (half base * height)
!p1 = let npq = np * q
in fromIntegral (floor (2.195 * sqrt npq - 4.6 * q) :: Int) + 0.5
xl = xm - p1 -- Left edge of triangle
xr = xm + p1 -- Right edge of triangle
c = 0.134 + 20.5 / (15.3 + fromIntegral bigM)
-- p1 + area of parallelogram region
!p2 = p1 * (1.0 + c + c)
--
lambdaL = let al = (ffm - xl) / (ffm - xl * p)
in al * (1.0 + 0.5 * al)
lambdaR = let ar = (xr - ffm) / (xr * q)
in ar * (1.0 + 0.5 * ar)
-- p2 + area of left tail
!p3 = p2 + c / lambdaL
-- p3 + area of right tail
!p4 = p3 + c / lambdaR
-- Compute binomial variate using inversion method (BINV in
-- Kachitvichyanukul1988)
binomialInv :: StatefulGen g m => Int -> Double -> g -> m Int
{-# INLINE binomialInv #-}
binomialInv n p g = do
u <- uniformDoublePositive01M g
return $! invertBinomial n p u
-- This function is defined on top level to avoid inlining it since it's rather
-- large and we don't need specializations since it's monomorphic anyway
invertBinomial
:: Int -- N of trials
-> Double -- probability of success
-> Double -- Output of PRNG
-> Int
invertBinomial !n !p !u0 = invert (q^n) u0 0
where
-- We forcing s&a in order to avoid allocating thunks. Those are
-- more expensive than computing them unconditionally
q = 1 - p
!s = p / q
!a = fromIntegral (n + 1) * s
--
invert !r !u !x
| u <= r = x
| otherwise = invert r' u' x'
where
u' = u - r
x' = x + 1
r' = r * ((a / fromIntegral x') - s)
-- $references
--
-- * Doornik, J.A. (2005) An improved ziggurat method to generate
-- normal random samples. Mimeo, Nuffield College, University of
-- Oxford. <http://www.doornik.com/research/ziggurat.pdf>
--
-- * Thomas, D.B.; Leong, P.G.W.; Luk, W.; Villasenor, J.D.
-- (2007). Gaussian random number generators.
-- /ACM Computing Surveys/ 39(4).
-- <http://www.cse.cuhk.edu.hk/~phwl/mt/public/archives/papers/grng_acmcs07.pdf>
--
-- * Kachitvichyanukul, V. and Schmeiser, B. W. Binomial Random
-- Variate Generation. Communications of the ACM, 31, 2 (February,
-- 1988) 216. <https://dl.acm.org/doi/pdf/10.1145/42372.42381>
-- Here's an example of how the algorithm's sampling regions look
-- 
|