1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
-- |
-- Module: Control.Wire.Core
-- Copyright: (c) 2013 Ertugrul Soeylemez
-- License: BSD3
-- Maintainer: Ertugrul Soeylemez <es@ertes.de>
{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TupleSections #-}
module Control.Wire.Core
( -- * Wires
Wire(..),
stepWire,
-- * Constructing wires
mkConst,
mkEmpty,
mkGen,
mkGen_,
mkGenN,
mkId,
mkPure,
mkPure_,
mkPureN,
mkSF,
mkSF_,
mkSFN,
-- * Data flow and dependencies
delay,
evalWith,
force,
forceNF,
-- * Utilities
(&&&!),
(***!),
lstrict,
mapWire
)
where
import Control.Applicative
import Control.Arrow
import Control.Category
import Control.DeepSeq hiding (force)
import Control.Monad
import Control.Monad.Fix
import Control.Parallel.Strategies
import Data.Monoid
import Data.Profunctor
import qualified Data.Semigroup as Sg
import Data.String
import Prelude hiding ((.), id)
-- | A wire is a signal function. It maps a reactive value to another
-- reactive value.
data Wire s e m a b where
WArr :: (Either e a -> Either e b) -> Wire s e m a b
WConst :: Either e b -> Wire s e m a b
WGen :: (s -> Either e a -> m (Either e b, Wire s e m a b)) -> Wire s e m a b
WId :: Wire s e m a a
WPure :: (s -> Either e a -> (Either e b, Wire s e m a b)) -> Wire s e m a b
instance (Monad m, Monoid e) => Alternative (Wire s e m a) where
empty = WConst (Left mempty)
w1@(WConst (Right _)) <|> _ = w1
w1@WId <|> _ = w1
WConst (Left ex) <|> w2 = mapLeft (ex <>) w2
w1' <|> w2' =
WGen $ \ds mx' ->
liftM2 (\(mx1, w1) (mx2, w2) -> lstrict (choose mx1 mx2, w1 <|> w2))
(stepWire w1' ds mx')
(stepWire w2' ds mx')
where
choose mx1@(Right _) _ = mx1
choose _ mx2@(Right _) = mx2
choose (Left ex1) (Left ex2) = Left (ex1 <> ex2)
instance (Monad m) => Applicative (Wire s e m a) where
pure = WConst . Right
wf' <*> wx' =
WGen $ \ds mx' ->
liftM2 (\(mf, wf) (mx, wx) -> lstrict (mf <*> mx, wf <*> wx))
(stepWire wf' ds mx')
(stepWire wx' ds mx')
instance (Monad m) => Arrow (Wire s e m) where
arr f = WArr (fmap f)
first w' =
WGen $ \ds mxy' ->
liftM (\(mx, w) -> lstrict (liftA2 (,) mx (fmap snd mxy'), first w))
(stepWire w' ds (fmap fst mxy'))
instance (Monad m, Monoid e) => ArrowChoice (Wire s e m) where
left w' =
WGen $ \ds mmx' ->
liftM (fmap Left ***! left) .
stepWire w' ds $
case mmx' of
Right (Left x) -> Right x
Right (Right _) -> Left mempty
Left ex -> Left ex
right w' =
WGen $ \ds mmx' ->
liftM (fmap Right ***! right) .
stepWire w' ds $
case mmx' of
Right (Right x) -> Right x
Right (Left _) -> Left mempty
Left ex -> Left ex
wl' +++ wr' =
WGen $ \ds mmx' ->
case mmx' of
Right (Left x) -> do
liftM2 (\(mx, wl) (_, wr) -> lstrict (fmap Left mx, wl +++ wr))
(stepWire wl' ds (Right x))
(stepWire wr' ds (Left mempty))
Right (Right x) -> do
liftM2 (\(_, wl) (mx, wr) -> lstrict (fmap Right mx, wl +++ wr))
(stepWire wl' ds (Left mempty))
(stepWire wr' ds (Right x))
Left ex ->
liftM2 (\(_, wl) (_, wr) -> lstrict (Left ex, wl +++ wr))
(stepWire wl' ds (Left ex))
(stepWire wr' ds (Left ex))
wl' ||| wr' =
WGen $ \ds mmx' ->
case mmx' of
Right (Left x) -> do
liftM2 (\(mx, wl) (_, wr) -> lstrict (mx, wl ||| wr))
(stepWire wl' ds (Right x))
(stepWire wr' ds (Left mempty))
Right (Right x) -> do
liftM2 (\(_, wl) (mx, wr) -> lstrict (mx, wl ||| wr))
(stepWire wl' ds (Left mempty))
(stepWire wr' ds (Right x))
Left ex ->
liftM2 (\(_, wl) (_, wr) -> lstrict (Left ex, wl ||| wr))
(stepWire wl' ds (Left ex))
(stepWire wr' ds (Left ex))
instance (MonadFix m) => ArrowLoop (Wire s e m) where
loop w' =
WGen $ \ds mx' ->
liftM (fmap fst ***! loop) .
mfix $ \ ~(mx, _) ->
let d | Right (_, d) <- mx = d
| otherwise = error "Feedback broken by inhibition"
in stepWire w' ds (fmap (, d) mx')
instance (Monad m, Monoid e) => ArrowPlus (Wire s e m) where
(<+>) = (<|>)
instance (Monad m, Monoid e) => ArrowZero (Wire s e m) where
zeroArrow = empty
instance (Monad m) => Category (Wire s e m) where
id = WId
w2' . w1' =
WGen $ \ds mx0 -> do
(mx1, w1) <- stepWire w1' ds mx0
(mx2, w2) <- stepWire w2' ds mx1
mx2 `seq` return (mx2, w2 . w1)
instance (Monad m, Monoid e) => Choice (Wire s e m) where
left' = left
right' = right
instance (Monad m, Floating b) => Floating (Wire s e m a b) where
(**) = liftA2 (**)
acos = fmap acos
acosh = fmap acosh
asin = fmap asin
asinh = fmap asinh
atan = fmap atan
atanh = fmap atanh
cos = fmap cos
cosh = fmap cosh
exp = fmap exp
log = fmap log
logBase = liftA2 logBase
pi = pure pi
sin = fmap sin
sinh = fmap sinh
sqrt = fmap sqrt
tan = fmap tan
tanh = fmap tanh
instance (Monad m, Fractional b) => Fractional (Wire s e m a b) where
(/) = liftA2 (/)
recip = fmap recip
fromRational = pure . fromRational
instance (Monad m) => Functor (Wire s e m a) where
fmap f (WArr g) = WArr (fmap f . g)
fmap f (WConst mx) = WConst (fmap f mx)
fmap f (WGen g) = WGen (\ds -> liftM (fmap f ***! fmap f) . g ds)
fmap f WId = WArr (fmap f)
fmap f (WPure g) = WPure (\ds -> (fmap f ***! fmap f) . g ds)
instance (Monad m, IsString b) => IsString (Wire s e m a b) where
fromString = pure . fromString
instance (Monad m, Monoid b) => Monoid (Wire s e m a b) where
mempty = pure mempty
mappend = liftA2 mappend
instance (Monad m, Num b) => Num (Wire s e m a b) where
(+) = liftA2 (+)
(-) = liftA2 (-)
(*) = liftA2 (*)
abs = fmap abs
negate = fmap negate
signum = fmap signum
fromInteger = pure . fromInteger
instance (Monad m) => Profunctor (Wire s e m) where
dimap f g (WArr h) = WArr (fmap g . h . fmap f)
dimap _ g (WConst mx) = WConst (fmap g mx)
dimap f g (WGen h) = WGen (\ds -> liftM (fmap g ***! dimap f g) . h ds . fmap f)
dimap f g WId = WArr (fmap (g . f))
dimap f g (WPure h) = WPure (\ds -> (fmap g ***! dimap f g) . h ds . fmap f)
lmap f (WArr g) = WArr (g . fmap f)
lmap _ (WConst mx) = WConst mx
lmap f (WGen g) = WGen (\ds -> liftM (fmap (lmap f)) . g ds . fmap f)
lmap f WId = WArr (fmap f)
lmap f (WPure g) = WPure (\ds -> fmap (lmap f) . g ds . fmap f)
rmap = fmap
instance (Monad m, Sg.Semigroup b) => Sg.Semigroup (Wire s e m a b) where
(<>) = liftA2 (Sg.<>)
instance (Monad m, Monoid e) => Strong (Wire s e m) where
first' = first
second' = second
-- | Left-strict version of '&&&' for functions.
(&&&!) :: (a -> b) -> (a -> c) -> (a -> (b, c))
(&&&!) f g x' =
let (x, y) = (f x', g x')
in x `seq` (x, y)
-- | Left-strict version of '***' for functions.
(***!) :: (a -> c) -> (b -> d) -> ((a, b) -> (c, d))
(***!) f g (x', y') =
let (x, y) = (f x', g y')
in x `seq` (x, y)
-- | This wire delays its input signal by the smallest possible
-- (semantically infinitesimal) amount of time. You can use it when you
-- want to use feedback ('ArrowLoop'): If the user of the feedback
-- depends on /now/, delay the value before feeding it back. The
-- argument value is the replacement signal at the beginning.
--
-- * Depends: before now.
delay :: a -> Wire s e m a a
delay x' = mkSFN $ \x -> (x', delay x)
-- | Evaluate the input signal using the given 'Strategy' here. This
-- wire evaluates only produced values.
--
-- * Depends: now.
evalWith :: Strategy a -> Wire s e m a a
evalWith s =
WArr $ \mx ->
case mx of
Right x -> (x `using` s) `seq` mx
Left _ -> mx
-- | Force the input signal to WHNF here. This wire forces both
-- produced values and inhibition values.
--
-- * Depends: now.
force :: Wire s e m a a
force =
WArr $ \mx ->
case mx of
Right x -> x `seq` mx
Left ex -> ex `seq` mx
-- | Force the input signal to NF here. This wire forces only produced
-- values.
--
-- * Depends: now.
forceNF :: (NFData a) => Wire s e m a a
forceNF =
WArr $ \mx ->
case mx of
Right x -> x `deepseq` mx
Left _ -> mx
-- | Left-strict tuple.
lstrict :: (a, b) -> (a, b)
lstrict (x, y) = x `seq` (x, y)
-- | Apply the given function to the wire's inhibition value.
mapLeft :: (Monad m) => (e -> e) -> Wire s e m a b -> Wire s e m a b
mapLeft _ w1@WId = w1
mapLeft f' w = mapOutput f w
where
f (Left ex) = Left (f' ex)
f (Right x) = Right x
-- | Apply the given function to the wire's output.
mapOutput :: (Monad m) => (Either e b' -> Either e b) -> Wire s e m a b' -> Wire s e m a b
mapOutput f (WArr g) = WArr (f . g)
mapOutput f (WConst mx) = WConst (f mx)
mapOutput f (WGen g) = WGen (\ds -> liftM (f *** mapOutput f) . g ds)
mapOutput f WId = WArr f
mapOutput f (WPure g) = WPure (\ds -> (f *** mapOutput f) . g ds)
-- | Apply the given monad morphism to the wire's underlying monad.
mapWire ::
(Monad m', Monad m)
=> (forall a. m' a -> m a)
-> Wire s e m' a b
-> Wire s e m a b
mapWire _ (WArr g) = WArr g
mapWire _ (WConst mx) = WConst mx
mapWire f (WGen g) = WGen (\ds -> liftM (lstrict . second (mapWire f)) . f . g ds)
mapWire _ WId = WId
mapWire f (WPure g) = WPure (\ds -> lstrict . second (mapWire f) . g ds)
-- | Construct a stateless wire from the given signal mapping function.
mkConst :: Either e b -> Wire s e m a b
mkConst = WConst
-- | Construct the empty wire, which inhibits forever.
mkEmpty :: (Monoid e) => Wire s e m a b
mkEmpty = mkConst (Left mempty)
-- | Construct a stateful wire from the given transition function.
mkGen :: (Monad m, Monoid s) => (s -> a -> m (Either e b, Wire s e m a b)) -> Wire s e m a b
mkGen f = loop mempty
where
loop s' =
WGen $ \ds mx ->
let s = s' <> ds in
s `seq`
case mx of
Left ex -> return (Left ex, loop s)
Right x' -> liftM lstrict (f s x')
-- | Construct a stateless wire from the given transition function.
mkGen_ :: (Monad m) => (a -> m (Either e b)) -> Wire s e m a b
mkGen_ f = loop
where
loop =
WGen $ \_ mx ->
case mx of
Left ex -> return (Left ex, loop)
Right x -> liftM (lstrict . (, loop)) (f x)
-- | Construct a stateful wire from the given transition function.
mkGenN :: (Monad m) => (a -> m (Either e b, Wire s e m a b)) -> Wire s e m a b
mkGenN f = loop
where
loop =
WGen $ \_ mx ->
case mx of
Left ex -> return (Left ex, loop)
Right x' -> liftM lstrict (f x')
-- | Construct the identity wire.
mkId :: Wire s e m a a
mkId = WId
-- | Construct a pure stateful wire from the given transition function.
mkPure :: (Monoid s) => (s -> a -> (Either e b, Wire s e m a b)) -> Wire s e m a b
mkPure f = loop mempty
where
loop s' =
WPure $ \ds mx ->
let s = s' <> ds in
s `seq`
case mx of
Left ex -> (Left ex, loop s)
Right x' -> lstrict (f s x')
-- | Construct a pure stateless wire from the given transition function.
mkPure_ :: (a -> Either e b) -> Wire s e m a b
mkPure_ f = WArr $ (>>= f)
-- | Construct a pure stateful wire from the given transition function.
mkPureN :: (a -> (Either e b, Wire s e m a b)) -> Wire s e m a b
mkPureN f = loop
where
loop =
WPure $ \_ mx ->
case mx of
Left ex -> (Left ex, loop)
Right x' -> lstrict (f x')
-- | Construct a pure stateful wire from the given signal function.
mkSF :: (Monoid s) => (s -> a -> (b, Wire s e m a b)) -> Wire s e m a b
mkSF f = mkPure (\ds -> lstrict . first (Right) . f ds)
-- | Construct a pure stateless wire from the given function.
mkSF_ :: (a -> b) -> Wire s e m a b
mkSF_ f = WArr (fmap f)
-- | Construct a pure stateful wire from the given signal function.
mkSFN :: (a -> (b, Wire s e m a b)) -> Wire s e m a b
mkSFN f = mkPureN (lstrict . first (Right) . f)
-- | Perform one step of the given wire.
stepWire :: (Monad m) => Wire s e m a b -> s -> Either e a -> m (Either e b, Wire s e m a b)
stepWire w@(WArr f) _ mx' = return (f mx', w)
stepWire w@(WConst mx) _ mx' = return (mx' *> mx, w)
stepWire (WGen f) ds mx' = f ds mx'
stepWire w@WId _ mx' = return (mx', w)
stepWire (WPure f) ds mx' = return (f ds mx')
|