File: Analyze.hs

package info (click to toggle)
haskell-netwire 5.0.3-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 184 kB
  • sloc: haskell: 1,326; makefile: 2
file content (310 lines) | stat: -rw-r--r-- 8,503 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
-- |
-- Module:     FRP.Netwire.Analyze
-- Copyright:  (c) 2013 Ertugrul Soeylemez
-- License:    BSD3
-- Maintainer: Ertugrul Soeylemez <es@ertes.de>

module FRP.Netwire.Analyze
    ( -- * Linear graphs
      lAvg,
      lGraph,
      lGraphN,

      -- * Staircase graphs
      sAvg,
      sGraph,
      sGraphN,

      -- * Peaks
      highPeak,
      highPeakBy,
      lowPeak,
      lowPeakBy,

      -- * Debug
      avgFps,
      framerate
    )
    where

import Control.Wire
import qualified Data.Foldable as F
import qualified Data.Sequence as Seq
import qualified FRP.Netwire.Utils.Timeline as Tl
import Prelude hiding ((.), id)


-- | Average framerate over the last given number of samples.  One
-- important thing to note is that the value of this wire will generally
-- disagree with 'sAvg' composed with 'framerate'.  This is expected,
-- because this wire simply calculates the arithmetic mean, whereas
-- 'sAvg' will actually integrate the framerate graph.
--
-- Note:  This wire is for debugging purposes only, because it exposes
-- discrete time.  Do not taint your application with discrete time.
--
-- * Complexity: O(n) time and space wrt number of samples.

avgFps ::
    (RealFloat b, HasTime t s)
    => Int  -- ^ Number of samples.
    -> Wire s e m a b
avgFps int | int < 1 = error "avgFps: Non-positive number of samples"
avgFps int = loop Seq.empty
    where
    intf = fromIntegral int
    afps = (/ intf) . F.foldl' (+) 0

    loop ss' =
        mkSF $ \ds _ ->
            let fps = recip . realToFrac . dtime $ ds
                ss  = Seq.take int (fps Seq.<| ss')
            in if isInfinite fps
                 then (afps ss', loop ss')
                 else ss `seq` (afps ss, loop ss)


-- | Current framerate.
--
-- Note:  This wire is for debugging purposes only, because it exposes
-- discrete time.  Do not taint your application with discrete time.
--
-- * Inhibits: when the clock stopped ticking.

framerate ::
    (Eq b, Fractional b, HasTime t s, Monoid e)
    => Wire s e m a b
framerate =
    mkPure $ \ds _ ->
        let dt = realToFrac (dtime ds)
        in (if dt == 0 then Left mempty else Right (recip dt), framerate)


-- | High peak.
--
-- * Depends: now.

highPeak :: (Ord a) => Wire s e m a a
highPeak = highPeakBy compare


-- | High peak with respect to the given comparison function.
--
-- * Depends: now.

highPeakBy :: (a -> a -> Ordering) -> Wire s e m a a
highPeakBy = peakBy GT


-- | Calculate the average of the signal over the given interval (from
-- now).  This is done by calculating the integral of the corresponding
-- linearly interpolated graph and dividing it by the interval length.
-- See 'Tl.linAvg' for details.
--
-- Linear interpolation can be slow.  If you don't need it, you can use
-- the staircase variant 'sAvg'.
--
-- Example: @lAvg 2@
--
-- * Complexity: O(s) space, O(s) time wrt number of samples in the
--   interval.
--
-- * Depends: now.

lAvg ::
    (Fractional a, Fractional t, HasTime t s)
    => t    -- ^ Interval size.
    -> Wire s e m a a
lAvg int =
    mkSF $ \ds x ->
        let t = dtime ds in
        (x, loop t (Tl.singleton t x))

    where
    loop t' tl' =
        mkSF $ \ds x ->
            let t  = t' + dtime ds
                t0 = t - int
                tl = Tl.linCutL t0 (Tl.insert t x tl')
                a  = Tl.linAvg t0 t tl
            in (a, loop t tl)


-- | Produce a linearly interpolated graph for the given points in time,
-- where the magnitudes of the points are distances from /now/.
--
-- Linear interpolation can be slow.  If you don't need it, you can use
-- the faster staircase variant 'sGraph'.
--
-- Example: @lGraph [0, 1, 2]@ will output the interpolated inputs at
-- /now/, one second before now and two seconds before now.
--
-- * Complexity: O(s) space, O(n * log s) time, where s = number of
--   samples in the interval, n = number of requested data points.
--
-- * Depends: now.

lGraph ::
    (Fractional a, Fractional t, HasTime t s)
    => [t]  -- ^ Data points to produce.
    -> Wire s e m a [a]
lGraph qts =
    mkSF $ \ds x ->
        let t = dtime ds in
        (x <$ qts, loop t (Tl.singleton t x))

    where
    earliest = maximum (map abs qts)

    loop t' tl' =
        mkSF $ \ds x ->
            let t  = t' + dtime ds
                tl = Tl.linCutL (t - earliest) (Tl.insert t x tl')
                ps = map (\qt -> Tl.linLookup (t - abs qt) tl) qts
            in (ps, loop t tl)


-- | Graph the given interval from now with the given number of evenly
-- distributed points in time.  Convenience interface to 'lGraph'.
--
-- Linear interpolation can be slow.  If you don't need it, you can use
-- the faster staircase variant 'sGraphN'.
--
-- * Complexity: O(s) space, O(n * log s) time, where s = number of
--   samples in the interval, n = number of requested data points.
--
-- * Depends: now.

lGraphN ::
    (Fractional a, Fractional t, HasTime t s)
    => t    -- ^ Interval to graph from now.
    -> Int  -- ^ Number of data points to produce.
    -> Wire s e m a [a]
lGraphN int n
    | int <= 0 = error "lGraphN: Non-positive interval"
    | n <= 0   = error "lGraphN: Non-positive number of data points"
lGraphN int n =
    let n1   = n - 1
        f qt = realToFrac int * fromIntegral qt / fromIntegral n1
    in lGraph (map f [0..n1])


-- | Low peak.
--
-- * Depends: now.

lowPeak :: (Ord a) => Wire s e m a a
lowPeak = lowPeakBy compare


-- | Low peak with respect to the given comparison function.
--
-- * Depends: now.

lowPeakBy :: (a -> a -> Ordering) -> Wire s e m a a
lowPeakBy = peakBy LT


-- | Given peak with respect to the given comparison function.

peakBy ::
    (Eq o)
    => o  -- ^ This ordering means the first argument is larger.
    -> (a -> a -> o)  -- ^ Compare two elements.
    -> Wire s e m a a
peakBy o comp = mkSFN $ \x -> (x, loop x)
    where
    loop x' =
        mkSFN $ \x ->
            id &&& loop $
            if comp x x' == o then x else x'


-- | Calculate the average of the signal over the given interval (from
-- now).  This is done by calculating the integral of the corresponding
-- staircase graph and dividing it by the interval length.  See
-- 'Tl.scAvg' for details.
--
-- See also 'lAvg'.
--
-- Example: @sAvg 2@
--
-- * Complexity: O(s) space, O(s) time wrt number of samples in the
--   interval.
--
-- * Depends: now.

sAvg ::
    (Fractional a, Fractional t, HasTime t s)
    => t    -- ^ Interval size.
    -> Wire s e m a a
sAvg int =
    mkSF $ \ds x ->
        let t = dtime ds in
        (x, loop t (Tl.singleton t x))

    where
    loop t' tl' =
        mkSF $ \ds x ->
            let t  = t' + dtime ds
                t0 = t - int
                tl = Tl.scCutL t0 (Tl.insert t x tl')
                a  = Tl.scAvg t0 t tl
            in (a, loop t tl)


-- | Produce a staircase graph for the given points in time, where the
-- magnitudes of the points are distances from /now/.
--
-- See also 'lGraph'.
--
-- Example: @sGraph [0, 1, 2]@ will output the inputs at /now/, one
-- second before now and two seconds before now.
--
-- * Complexity: O(s) space, O(n * log s) time, where s = number of
--   samples in the interval, n = number of requested data points.
--
-- * Depends: now.

sGraph ::
    (Fractional t, HasTime t s)
    => [t]  -- ^ Data points to produce.
    -> Wire s e m a [a]
sGraph qts =
    mkSF $ \ds x ->
        let t = dtime ds in
        (x <$ qts, loop t (Tl.singleton t x))

    where
    earliest = maximum (map abs qts)

    loop t' tl' =
        mkSF $ \ds x ->
            let t  = t' + dtime ds
                tl = Tl.scCutL (t - earliest) (Tl.insert t x tl')
                ps = map (\qt -> Tl.scLookup (t - abs qt) tl) qts
            in (ps, loop t tl)


-- | Graph the given interval from now with the given number of evenly
-- distributed points in time.  Convenience interface to 'sGraph'.
--
-- See also 'lGraphN'.
--
-- * Complexity: O(s) space, O(n * log s) time, where s = number of
--   samples in the interval, n = number of requested data points.
--
-- * Depends: now.

sGraphN ::
    (Fractional t, HasTime t s)
    => t    -- ^ Interval to graph from now.
    -> Int  -- ^ Number of data points to produce.
    -> Wire s e m a [a]
sGraphN int n
    | int <= 0 = error "sGraphN: Non-positive interval"
    | n <= 0   = error "sGraphN: Non-positive number of data points"
sGraphN int n =
    let n1   = n - 1
        f qt = realToFrac int * fromIntegral qt / fromIntegral n1
    in sGraph (map f [0..n1])