1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{- |
The 'Newtype' typeclass and related functions.
Primarily pulled from Conor McBride's Epigram work. Some examples:
>>> ala Sum foldMap [1,2,3,4]
10
>>> ala Endo foldMap [(+1), (+2), (subtract 1), (*2)] 3
8
>>> under2 Min (<>) 2 1
1
>>> over All not (All False)
All {getAll = True)
This package includes 'Newtype' instances for all the (non-GHC\/foreign)
newtypes in base (as seen in the examples).
However, there are neat things you can do with this with
/any/ newtype and you should definitely define your own 'Newtype'
instances for the power of this library.
For example, see @ala Cont traverse@, with the proper 'Newtype' instance for Cont.
You can easily define new instances for your newtypes with the help of GHC.Generics
> {-# LANGUAGE DeriveGeneric #-}
> import GHC.Generics
>
> (...)
> newtype Example = Example Int
> deriving (Generic)
>
> instance Newtype Example
>
This avoids the use of Template Haskell (TH) to get new instances.
-}
module Control.Newtype.Generics
( Newtype(..)
, op
, ala
, ala'
, under
, over
, under2
, over2
, underF
, overF
) where
import Control.Applicative
import Control.Arrow
import Data.Functor.Compose
import Data.Functor.Identity
import Data.Fixed
import Data.Kind (Type)
import Data.Monoid
import Data.Ord
import qualified Data.Semigroup
#if MIN_VERSION_base(4,16,0)
import Data.Semigroup (Min(..), Max(..), WrappedMonoid(..))
#else
import Data.Semigroup (Min(..), Max(..), WrappedMonoid(..),Option(..))
#endif
import GHC.Generics
{-import Generics.Deriving-}
-- | Given a newtype @n@, we will always have the same unwrapped type @o@,
-- meaning we can represent this with a fundep @n -> o@.
--
-- Any instance of this class just needs to let @pack@ equal to the newtype's
-- constructor, and let @unpack@ destruct the newtype with pattern matching.
{-class Newtype n o | n -> o where-}
{-pack :: o -> n-}
{-unpack :: n -> o-}
-- Generic Newtype
class GNewtype n where
type GO n :: Type
gpack :: GO n -> n p
gunpack :: n p -> GO n
-- We only need one instance, if these generic functions are only to work for
-- newtypes, as these have a fixed form. For example, for a newtype X = Y,
-- Rep X = D1 ... (C1 ... (S1 ... (K1 ... Y)))
instance GNewtype (D1 d (C1 c (S1 s (K1 i a)))) where
type GO (D1 d (C1 c (S1 s (K1 i a)))) = a
gpack x = M1 (M1 (M1 (K1 x)))
gunpack (M1 (M1 (M1 (K1 x)))) = x
-- Original Newtype class, extended with generic defaults (trivial) and deprived
-- of the second type argument (less trivial, as it involves a type family with
-- a default, plus an equality constraint for the related type family in
-- GNewtype). We do get rid of MultiParamTypeClasses and FunctionalDependencies,
-- though.
-- | As long as the type @n@ is an instance of Generic, you can create an instance
-- with just @instance Newtype n@
class Newtype n where
type O n :: Type
type O n = GO (Rep n)
pack :: O n -> n
default pack :: (Generic n, GNewtype (Rep n), O n ~ GO (Rep n)) => O n -> n
pack = to . gpack
unpack :: n -> O n
default unpack :: (Generic n, GNewtype (Rep n), O n ~ GO (Rep n)) => n -> O n
unpack = gunpack . from
-- |
-- This function serves two purposes:
--
-- 1. Giving you the unpack of a newtype without you needing to remember the name.
--
-- 2. Showing that the first parameter is /completely ignored/ on the value level,
-- meaning the only reason you pass in the constructor is to provide type
-- information. Typeclasses sure are neat.
--
-- >>> op Identity (Identity 3)
-- 3
op :: (Newtype n,o ~ O n ) => (o -> n) -> n -> o
op _ = unpack
-- | The workhorse of the package. Given a "packer" and a \"higher order function\" (/hof/),
-- it handles the packing and unpacking, and just sends you back a regular old
-- function, with the type varying based on the /hof/ you passed.
--
-- The reason for the signature of the /hof/ is due to 'ala' not caring about structure.
-- To illustrate why this is important, consider this alternative implementation of 'under2':
--
-- > under2 :: (Newtype n, Newtype n', o' ~ O n', o ~ O n)
-- > => (o -> n) -> (n -> n -> n') -> (o -> o -> o')
-- > under2' pa f o0 o1 = ala pa (\p -> uncurry f . bimap p p) (o0, o1)
--
-- Being handed the "packer", the /hof/ may apply it in any structure of its choosing –
-- in this case a tuple.
--
-- >>> ala Sum foldMap [1,2,3,4]
-- 10
ala :: (Newtype n, Newtype n', o' ~ O n', o ~ O n)
=> (o -> n) -> ((o -> n) -> b -> n') -> (b -> o')
ala pa hof = ala' pa hof id
-- | This is the original function seen in Conor McBride's work.
-- The way it differs from the 'ala' function in this package,
-- is that it provides an extra hook into the \"packer\" passed to the hof.
-- However, this normally ends up being @id@, so 'ala' wraps this function and
-- passes @id@ as the final parameter by default.
-- If you want the convenience of being able to hook right into the hof,
-- you may use this function.
--
-- >>> ala' Sum foldMap length ["hello", "world"]
-- 10
--
-- >>> ala' First foldMap (readMaybe @Int) ["x", "42", "1"]
-- Just 42
ala' :: (Newtype n, Newtype n', o' ~ O n', o ~ O n)
=> (o -> n) -> ((a -> n) -> b -> n') -> (a -> o) -> (b -> o')
ala' _ hof f = unpack . hof (pack . f)
-- | A very simple operation involving running the function \'under\' the newtype.
--
-- >>> under Product (stimes 3) 3
-- 27
under :: (Newtype n, Newtype n', o' ~ O n', o ~ O n)
=> (o -> n) -> (n -> n') -> (o -> o')
under _ f = unpack . f . pack
-- | The opposite of 'under'. I.e., take a function which works on the
-- underlying types, and switch it to a function that works on the newtypes.
--
-- >>> over All not (All False)
-- All {getAll = True}
over :: (Newtype n, Newtype n', o' ~ O n', o ~ O n)
=> (o -> n) -> (o -> o') -> (n -> n')
over _ f = pack . f . unpack
-- | Lower a binary function to operate on the underlying values.
--
-- >>> under2 Any (<>) True False
-- True
--
-- @since 0.5.2
under2 :: (Newtype n, Newtype n', o' ~ O n', o ~ O n)
=> (o -> n) -> (n -> n -> n') -> (o -> o -> o')
under2 _ f o0 o1 = unpack $ f (pack o0) (pack o1)
-- | The opposite of 'under2'.
--
-- @since 0.5.2
over2 :: (Newtype n, Newtype n', o' ~ O n', o ~ O n)
=> (o -> n) -> (o -> o -> o') -> (n -> n -> n')
over2 _ f n0 n1 = pack $ f (unpack n0) (unpack n1)
-- | 'under' lifted into a Functor.
underF :: (Newtype n, Newtype n', o' ~ O n', o ~ O n, Functor f, Functor g)
=> (o -> n) -> (f n -> g n') -> (f o -> g o')
underF _ f = fmap unpack . f . fmap pack
-- | 'over' lifted into a Functor.
overF :: (Newtype n, Newtype n', o' ~ O n', o ~ O n, Functor f, Functor g)
=> (o -> n) -> (f o -> g o') -> (f n -> g n')
overF _ f = fmap pack . f . fmap unpack
-- Instances from Control.Applicative
instance Newtype (WrappedMonad m a) where
type O (WrappedMonad m a) = m a
pack = WrapMonad
unpack (WrapMonad a) = a
instance Newtype (WrappedArrow a b c) where
type O (WrappedArrow a b c) = a b c
pack = WrapArrow
unpack (WrapArrow a) = a
instance Newtype (ZipList a) where
type O (ZipList a) = [a]
pack = ZipList
unpack (ZipList a) = a
-- Instances from Control.Arrow
instance Newtype (Kleisli m a b) where
type O (Kleisli m a b) = a -> m b
pack = Kleisli
unpack (Kleisli a) = a
instance Newtype (ArrowMonad a b) where
type O (ArrowMonad a b) = a () b
pack = ArrowMonad
unpack (ArrowMonad a) = a
-- Instances from Data.Fixed
-- | @since 0.5.1
instance Newtype (Fixed a) where
type O (Fixed a) = Integer
pack = MkFixed
unpack (MkFixed x) = x
-- Instances from Data.Functor.Compose
-- | @since 0.5.1
instance Newtype (Compose f g a) where
type O (Compose f g a) = f (g a)
pack = Compose
unpack (Compose x) = x
-- Instances from Data.Functor.Const
instance Newtype (Const a x) where
type O (Const a x) = a
pack = Const
unpack (Const a) = a
-- Instances from Data.Functor.Identity
-- | @since 0.5.1
instance Newtype (Identity a) where
type O (Identity a) = a
pack = Identity
unpack (Identity a) = a
-- Instances from Data.Monoid
-- | @since 0.5.1
instance Newtype (Dual a) where
type O (Dual a) = a
pack = Dual
unpack (Dual a) = a
instance Newtype (Endo a) where
type O (Endo a) = (a -> a)
pack = Endo
unpack (Endo a) = a
instance Newtype All where
type O All = Bool
pack = All
unpack (All x) = x
instance Newtype Any where
type O Any = Bool
pack = Any
unpack (Any x) = x
instance Newtype (Sum a) where
type O (Sum a) = a
pack = Sum
unpack (Sum a) = a
instance Newtype (Product a) where
type O (Product a) = a
pack = Product
unpack (Product a) = a
instance Newtype (First a) where
type O (First a) = Maybe a
pack = First
unpack (First a) = a
instance Newtype (Last a) where
type O (Last a) = Maybe a
pack = Last
unpack (Last a) = a
-- | @since 0.5.1
instance Newtype (Alt f a) where
type O (Alt f a) = f a
pack = Alt
unpack (Alt x) = x
#if MIN_VERSION_base(4,12,0)
-- | @since 0.5.4
instance Newtype (Ap f a) where
type O (Ap f a) = f a
pack = Ap
unpack = getAp
#endif
-- Instances from Data.Ord
-- | @since 0.5.1
instance Newtype (Down a) where
type O (Down a) = a
pack = Down
unpack (Down a) = a
-- Instances from Data.Semigroup
-- | @since 0.5.1
instance Newtype (Min a) where
type O (Min a) = a
pack = Min
unpack (Min a) = a
-- | @since 0.5.1
instance Newtype (Max a) where
type O (Max a) = a
pack = Max
unpack (Max a) = a
-- | @since 0.5.1
instance Newtype (Data.Semigroup.First a) where
type O (Data.Semigroup.First a) = a
pack = Data.Semigroup.First
unpack (Data.Semigroup.First a) = a
-- | @since 0.5.1
instance Newtype (Data.Semigroup.Last a) where
type O (Data.Semigroup.Last a) = a
pack = Data.Semigroup.Last
unpack (Data.Semigroup.Last a) = a
-- | @since 0.5.1
instance Newtype (WrappedMonoid m) where
type O (WrappedMonoid m) = m
pack = WrapMonoid
unpack (WrapMonoid m) = m
#if !MIN_VERSION_base(4,16,0)
-- | @since 0.5.1
instance Newtype (Option a) where
type O (Option a) = Maybe a
pack = Option
unpack (Option x) = x
#endif
|