File: FixedFunctions.hs

package info (click to toggle)
haskell-numbers 3000.2.0.2-7
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 132 kB
  • sloc: haskell: 948; makefile: 3
file content (471 lines) | stat: -rw-r--r-- 16,108 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
-- Modified by Lennart Augustsson to fit into Haskell numerical hierarchy.
--
-- Module:
--
--      Fraction.hs
--
-- Language:
--
--      Haskell
--
-- Description: Rational with transcendental functionalities
--
--
--      This is a generalized Rational in disguise. Rational, as a type
--      synonim, could not be directly made an instance of any new class
--      at all.
--      But we would like it to be an instance of Transcendental, where
--      trigonometry, hyperbolics, logarithms, etc. are defined.
--      So here we are tiptoe-ing around, re-defining everything from
--      scratch, before designing the transcendental functions -- which
--      is the main motivation for this module.
--
--      Aside from its ability to compute transcendentals, Fraction
--      allows for denominators zero. Unlike Rational, Fraction does
--      not produce run-time errors for zero denominators, but use such
--      entities as indicators of invalid results -- plus or minus
--      infinities. Operations on fractions never fail in principle.
--
--      However, some function may compute slowly when both numerators
--      and denominators of their arguments are chosen to be huge.
--      For example, periodicity relations are utilized with large
--      arguments in trigonometric functions to reduce the arguments
--      to smaller values and thus improve on the convergence
--      of continued fractions. Yet, if pi number is chosen to
--      be extremely accurate then the reduced argument would
--      become a fraction with huge numerator and denominator
--      -- thus slowing down the entire computation of a trigonometric
--      function.
--
-- Usage:
--
--      When computation speed is not an issue and accuracy is important
--      this module replaces some of the functionalities typically handled
--      by the floating point numbers: trigonometry, hyperbolics, roots
--      and some special functions. All computations, including definitions
--      of the basic constants pi and e, can be carried with any desired
--      accuracy. One suggested usage is for mathematical servers, where
--      safety might be more important than speed. See also the module
--      Numerus, which supports mixed arithmetic between Integer,
--      Fraction and Cofra (Complex fraction), and returns complex
--      legal answers in some cases where Fraction would produce
--      infinities: log (-5), sqrt (-1), etc.
--
--
-- Required:
--
--      Haskell Prelude
--
-- Author:
--
--      Jan Skibinski, Numeric Quest Inc.
--
-- Date:
--
--      1998.08.16, last modified 2000.05.31
--
-- See also bottom of the page for description of the format used
-- for continued fractions, references, etc.
-------------------------------------------------------------------

module Data.Number.FixedFunctions where
import Prelude hiding (pi, sqrt, tan, atan, exp, log)
import Data.Ratio

approx      :: Rational -> Rational -> Rational
approx eps x = approxRational x eps

------------------------------------------------------------------
--              Category: Conversion
--      from continued fraction to fraction and vice versa,
--      from Taylor series to continued fraction.
-------------------------------------------------------------------
type CF = [(Rational, Rational)]

fromCF :: CF -> Rational
fromCF x =
        --
        -- Convert finite continued fraction to fraction
        -- evaluating from right to left. This is used
        -- mainly for testing in conjunction with "toCF".
        --
        foldr g 1 x
        where
            g :: (Rational, Rational) -> Rational -> Rational
            g u v = (fst u) + (snd u) / v

toCF :: Rational -> CF
toCF x =
        --
        -- Convert fraction to finite continued fraction
        --
        toCF' x []
        where
            toCF' u lst =
                case r of
                0 -> reverse (((q%1),(0%1)):lst)
                _ -> toCF' (b%r) (((q%1),(1%1)):lst)
                where
                    a = numerator u
                    b = denominator u
                    (q,r) = quotRem a b


approxCF :: Rational -> CF -> Rational
approxCF eps [] = 0
approxCF eps x
        --
        -- Approximate infinite continued fraction x by fraction,
        -- evaluating from left to right, and stopping when
        -- accuracy eps is achieved, or when a partial numerator
        -- is zero -- as it indicates the end of CF.
        --
        -- This recursive function relates continued fraction
        -- to rational approximation.
        --
        = approxCF' eps x 0 1 1 q' p' 1
            where
                h = fst (x!!0)
                (q', p') = x!!0
                approxCF' eps x v2 v1 u2 u1 a' n
                    | abs (1 - f1/f) < eps = approx eps f
                    | a == 0    = approx eps f
                    | otherwise = approxCF' eps x v1 v u1 u a (n+1)
                    where
                        (b, a) = x!!n
                        u  = b*u1 + a'*u2
                        v  = b*v1 + a'*v2
                        f  = u/v
                        f1 = u1/v1


-- Type signature determined by GHC.
fromTaylorToCF :: Fractional a => [a] -> a -> [(a, a)]
fromTaylorToCF s x =
        --
        -- Convert infinite number of terms of Taylor expansion of
        -- a function f(x) to an infinite continued fraction,
        -- where s = [s0,s1,s2,s3....] is a list of Taylor
        -- series coefficients, such that f(x)=s0 + s1*x + s2*x^2....
        --
        -- Require: No Taylor coefficient is zero
        --
        zero:one:[higher m | m <- [2..]]
        where
            zero      = (s!!0, s!!1 * x)
            one       = (1, -s!!2/s!!1 * x)
            higher m  = (1 + s!!m/s!!(m-1) * x, -s!!(m+1)/s!!m * x)


------------------------------------------------------------------
--                Category: Auxiliaries
------------------------------------------------------------------

fac :: Integer -> Integer
fac = product . enumFromTo 1

integerRoot2 :: Integer -> Integer
integerRoot2 1 = 1
integerRoot2 x =
        --
        -- Biggest integer m, such that x - m^2 >= 0,
        -- where x is a positive integer
        --
        integerRoot2' 0 x (x `div` 2) x
        where
            integerRoot2' lo hi r y
                | c > y      = integerRoot2' lo r ((r + lo) `div` 2) y
                | c == y     = r
                | otherwise  =
                    if (r+1)^2 > y then
                        r
                    else
                        integerRoot2' r hi ((r + hi) `div` 2) y
                    where c = r^2

-------------------------------------------------------------------
-- Everything below is the instantiation of class Transcendental
-- for type Rational. See also modules Cofra and Numerus.
--
--                Category: Constants
-------------------------------------------------------------------

pi :: Rational -> Rational
pi eps =
        --
        -- pi with accuracy eps
        --
        -- Based on Ramanujan formula, as described in Ref. 3
        -- Accuracy: extremely good, 10^-19 for one term of continued
        -- fraction
        --
        (sqrt eps d) / (approxCF eps (fromTaylorToCF s x))
        where
            x = 1%(640320^3)::Rational
            s = [((-1)^k*(fac (6*k))%((fac k)^3*(fac (3*k))))*((a*k+b)%c) | k<-[0..]]
            a = 545140134
            b = 13591409
            c = 426880
            d = 10005

---------------------------------------------------------------------
--                Category: Trigonometry
---------------------------------------------------------------------

tan :: Rational -> Rational -> Rational
tan eps 0  = 0
tan eps x
        --
        -- Tangent x computed with accuracy of eps.
        --
        -- Trigonometric identities are used first to reduce
        -- the value of x to a value from within the range of [-pi/2,pi/2]
        --
        | x >= half_pi'  = tan eps (x - ((1+m)%1)*xpi)
        | x <= -half_pi' = tan eps (x + ((1+m)%1)*xpi)
        --- | absx > 1       = 2 * t/(1 - t^2)
        | otherwise      = approxCF eps (cf x)
        where
            absx    = abs x
            t       = tan eps (x/2)
            m       = floor ((absx - half_pi)/ xpi)
            xpi     = pi eps
            half_pi'= 158%100
            half_pi = xpi * (1%2)
            cf u    = ((0%1,1%1):[((2*r + 1)/u, -1) | r <- [0..]])

sin :: Rational -> Rational -> Rational
sin eps 0      = 0
sin eps x      = 2*t/(1 + t*t)
        where
            t = tan eps (x/2)

cos :: Rational -> Rational -> Rational
cos eps 0      = 1
cos eps x      = (1 - p)/(1 + p)
        where
            t = tan eps (x/2)
            p = t*t

atan :: Rational -> Rational -> Rational
atan eps x
        --
        -- Inverse tangent of x with approximation eps
        --
        | x == 0       = 0
        | x > 1        =  (pi eps)/2 - atan eps (1/x)
        | x < -1       = -(pi eps)/2 - atan eps (1/x)
        | otherwise    = approxCF eps ((0,x):[((2*m - 1),(m*x)^2) | m<- [1..]])


asin :: Rational -> Rational -> Rational
asin eps x
        --
        -- Inverse sine of x with approximation eps
        --
        | x == 0    = 0
        | abs x > 1 = error "Fraction.asin"
        | x == 1    = (pi eps) *  (1%2)
        | x == -1   = (pi eps) * (-1%2)
        | otherwise = atan eps (x / (sqrt eps (1 - x^2)))


acos :: Rational -> Rational -> Rational
acos eps x
        --
        -- Inverse cosine of x with approximation eps
        --
        | x == 0    = (pi eps)*(1%2)
        | abs x > 1 = error "Fraction.sin"
        | x == 1    = 0
        | x == -1   = pi eps
        | otherwise = atan eps ((sqrt eps (1 - x^2)) / x)

---------------------------------------------------------------------
--                Category: Roots
---------------------------------------------------------------------

sqrt :: Rational -> Rational -> Rational
sqrt eps x
        --
        -- Square root of x with approximation eps
        --
        -- The CF pattern is: [(m,x-m^2),(2m,x-m^2),(2m,x-m^2)....]
        -- where m is the biggest integer such that x-m^2 >= 0
        --
        | x < 0        = error "Fraction.sqrt"
        | x == 0       = 0
        | x < 1        = 1/(sqrt eps (1/x))
        | otherwise    = approxCF eps ((m,x-m^2):[(2*m,x-m^2) | r<-[0..]])
        where
            m = (integerRoot2 (floor x))%1

---------------------------------------------------------------------
--              Category: Exponentials and hyperbolics
---------------------------------------------------------------------

exp :: Rational -> Rational -> Rational
exp eps x
        --
        -- Exponent of x with approximation eps
        --
        -- Based on Jacobi type continued fraction for exponential,
        -- with fractional terms:
        --     n == 0 ==> (1,x)
        --     n == 1 ==> (1 -x/2, x^2/12)
        --     n >= 2 ==> (1, x^2/(16*n^2 - 4))
        -- For x outside [-1,1] apply identity exp(x) = (exp(x/2))^2
        --
        | x == 0       = 1
        | x > 1        = (approxCF eps (f (x*(1%p))))^p
        | x < (-1)     = (approxCF eps (f (x*(1%q))))^q
        | otherwise    = approxCF eps (f x)
        where
            p = ceiling x
            q = -(floor x)
            f y = (1,y):(1-y/2,y^2/12):[(1,y^2/(16*n^2-4)) | n<-[2..]]


cosh :: Rational -> Rational -> Rational
cosh eps x =
        --
        -- Hyperbolic cosine with approximation eps
        --
        (a + b)*(1%2)
        where
            a = exp eps x
            b = 1/a

sinh :: Rational -> Rational -> Rational
sinh eps x =
        --
        -- Hyperbolic sine with approximation eps
        --
        (a - b)*(1%2)
        where
            a = exp eps x
            b = 1/a

tanh :: Rational -> Rational -> Rational
tanh eps x =
        --
        -- Hyperbolic tangent with approximation eps
        --
        (a - b)/ (a + b)
        where
            a = exp eps x
            b = 1/a

atanh :: Rational -> Rational -> Rational
atanh eps x
        --
        -- Inverse hyperbolic tangent with approximation eps
        --

--      | x >= 1     = 1%0
--      | x <= -1    = -1%0
        | otherwise  = (1%2) * (log eps ((1 + x) / (1 - x)))

asinh :: Rational -> Rational -> Rational
asinh eps x
        --
        -- Inverse hyperbolic sine
        --
--      | x == 1%0  =  1%0
--      | x == -1%0 = -1%0
        | otherwise  = log eps (x + (sqrt eps (x^2 + 1)))

acosh :: Rational -> Rational -> Rational
acosh eps x
        --
        -- Inverse hyperbolic cosine
        --
--      | x == 1%0 = 1%0
--      | x < 1     = 1%0
        | otherwise = log eps (x + (sqrt eps (x^2 - 1)))

---------------------------------------------------------------------
--                Category: Logarithms
---------------------------------------------------------------------

log :: Rational -> Rational -> Rational
log eps x
        --
        -- Natural logarithm of strictly positive x
        --
        -- Based on Stieltjes type continued fraction for log (1+y)
        --     (0,y):(1,y/2):[(1,my/(4m+2)),(1,(m+1)y/(4m+2)),....
        --     (m >= 1, two elements per m)
        -- Efficient only for x close to one. For larger x we recursively
        -- apply the identity log(x) = log(x/2) + log(2)
        --
        | x <= 0    = error "Fraction.log"
        | x <  1    = -log eps (1/x)
        | x == 1    =  0
        | otherwise =
            case (scaled (x,0)) of
            (1,s) -> (s%1) * approxCF eps (series 1)
            (y,0) -> approxCF eps (series (y-1))
            (y,s) -> approxCF eps (series (y-1)) + (s%1)*approxCF eps (series 1)
        where
            series :: Rational -> CF
            series u = (0,u):(1,u/2):[(1,u*((m+n)%(4*m + 2)))|m<-[1..],n<-[0,1]]
            scaled :: (Rational,Integer) -> (Rational, Integer)
            scaled (x, n)
                | x == 2 = (1,n+1)
                | x < 2 = (x, n)
                | otherwise = scaled (x*(1%2), n+1)


---------------------------------------------------------------------------
-- References:
--
-- 1. Classical Gosper notes on continued fraction arithmetic:
--      http:%www.inwap.com/pdp10/hbaker/hakmem/cf.html
-- 2. Pages on numerical constants represented as continued fractions:
--      http:%www.mathsoft.com/asolve/constant/cntfrc/cntfrc.html
-- 3. "Efficient on-line computation of real functions using exact floating
--     point", by Peter John Potts, Imperial College
--      http:%theory.doc.ic.ac.uk/~pjp/ieee.html
--------------------------------------------------------------------------

--------------------------------------------------------------------------

--      The following representation of continued fractions is used:
--
--      Continued fraction:         CF representation:
--      ==================           ====================
--      b0 + a0
--           -------        ==>      [(b0, a0), (b1, a1), (b2, a2).....]
--           b1 + a1
--                -------
--                b2 + ...
--
--      where "a's" and "b's" are Rationals.
--
--      Many continued fractions could be represented by much simpler form
--      [b1,b2,b3,b4..], where all coefficients "a" would have the same value 1
--      and would not need to be explicitely listed; and the coefficients "b"
--      could be chosen as integers.
--      However, there are some useful continued fractions that are
--      given with fraction coefficients: "a", "b" or both.
--      A fractional form can always be converted to an integer form, but
--      a conversion process is not always simple and such an effort is not
--      always worth of the achieved savings in the storage space or the
--      computational efficiency.
--
----------------------------------------------------------------------------
--
-- Copyright:
--
--      (C) 1998 Numeric Quest, All rights reserved
--
--      <jans@numeric-quest.com>
--
--      http://www.numeric-quest.com
--
-- License:
--
--      GNU General Public License, GPL
--
-----------------------------------------------------------------------------