1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
-- Modified by Lennart Augustsson to fit into Haskell numerical hierarchy.
--
-- Module:
--
-- Fraction.hs
--
-- Language:
--
-- Haskell
--
-- Description: Rational with transcendental functionalities
--
--
-- This is a generalized Rational in disguise. Rational, as a type
-- synonim, could not be directly made an instance of any new class
-- at all.
-- But we would like it to be an instance of Transcendental, where
-- trigonometry, hyperbolics, logarithms, etc. are defined.
-- So here we are tiptoe-ing around, re-defining everything from
-- scratch, before designing the transcendental functions -- which
-- is the main motivation for this module.
--
-- Aside from its ability to compute transcendentals, Fraction
-- allows for denominators zero. Unlike Rational, Fraction does
-- not produce run-time errors for zero denominators, but use such
-- entities as indicators of invalid results -- plus or minus
-- infinities. Operations on fractions never fail in principle.
--
-- However, some function may compute slowly when both numerators
-- and denominators of their arguments are chosen to be huge.
-- For example, periodicity relations are utilized with large
-- arguments in trigonometric functions to reduce the arguments
-- to smaller values and thus improve on the convergence
-- of continued fractions. Yet, if pi number is chosen to
-- be extremely accurate then the reduced argument would
-- become a fraction with huge numerator and denominator
-- -- thus slowing down the entire computation of a trigonometric
-- function.
--
-- Usage:
--
-- When computation speed is not an issue and accuracy is important
-- this module replaces some of the functionalities typically handled
-- by the floating point numbers: trigonometry, hyperbolics, roots
-- and some special functions. All computations, including definitions
-- of the basic constants pi and e, can be carried with any desired
-- accuracy. One suggested usage is for mathematical servers, where
-- safety might be more important than speed. See also the module
-- Numerus, which supports mixed arithmetic between Integer,
-- Fraction and Cofra (Complex fraction), and returns complex
-- legal answers in some cases where Fraction would produce
-- infinities: log (-5), sqrt (-1), etc.
--
--
-- Required:
--
-- Haskell Prelude
--
-- Author:
--
-- Jan Skibinski, Numeric Quest Inc.
--
-- Date:
--
-- 1998.08.16, last modified 2000.05.31
--
-- See also bottom of the page for description of the format used
-- for continued fractions, references, etc.
-------------------------------------------------------------------
module Data.Number.FixedFunctions where
import Prelude hiding (pi, sqrt, tan, atan, exp, log)
import Data.Ratio
approx :: Rational -> Rational -> Rational
approx eps x = approxRational x eps
------------------------------------------------------------------
-- Category: Conversion
-- from continued fraction to fraction and vice versa,
-- from Taylor series to continued fraction.
-------------------------------------------------------------------
type CF = [(Rational, Rational)]
fromCF :: CF -> Rational
fromCF x =
--
-- Convert finite continued fraction to fraction
-- evaluating from right to left. This is used
-- mainly for testing in conjunction with "toCF".
--
foldr g 1 x
where
g :: (Rational, Rational) -> Rational -> Rational
g u v = (fst u) + (snd u) / v
toCF :: Rational -> CF
toCF x =
--
-- Convert fraction to finite continued fraction
--
toCF' x []
where
toCF' u lst =
case r of
0 -> reverse (((q%1),(0%1)):lst)
_ -> toCF' (b%r) (((q%1),(1%1)):lst)
where
a = numerator u
b = denominator u
(q,r) = quotRem a b
approxCF :: Rational -> CF -> Rational
approxCF eps [] = 0
approxCF eps x
--
-- Approximate infinite continued fraction x by fraction,
-- evaluating from left to right, and stopping when
-- accuracy eps is achieved, or when a partial numerator
-- is zero -- as it indicates the end of CF.
--
-- This recursive function relates continued fraction
-- to rational approximation.
--
= approxCF' eps x 0 1 1 q' p' 1
where
h = fst (x!!0)
(q', p') = x!!0
approxCF' eps x v2 v1 u2 u1 a' n
| abs (1 - f1/f) < eps = approx eps f
| a == 0 = approx eps f
| otherwise = approxCF' eps x v1 v u1 u a (n+1)
where
(b, a) = x!!n
u = b*u1 + a'*u2
v = b*v1 + a'*v2
f = u/v
f1 = u1/v1
-- Type signature determined by GHC.
fromTaylorToCF :: Fractional a => [a] -> a -> [(a, a)]
fromTaylorToCF s x =
--
-- Convert infinite number of terms of Taylor expansion of
-- a function f(x) to an infinite continued fraction,
-- where s = [s0,s1,s2,s3....] is a list of Taylor
-- series coefficients, such that f(x)=s0 + s1*x + s2*x^2....
--
-- Require: No Taylor coefficient is zero
--
zero:one:[higher m | m <- [2..]]
where
zero = (s!!0, s!!1 * x)
one = (1, -s!!2/s!!1 * x)
higher m = (1 + s!!m/s!!(m-1) * x, -s!!(m+1)/s!!m * x)
------------------------------------------------------------------
-- Category: Auxiliaries
------------------------------------------------------------------
fac :: Integer -> Integer
fac = product . enumFromTo 1
integerRoot2 :: Integer -> Integer
integerRoot2 1 = 1
integerRoot2 x =
--
-- Biggest integer m, such that x - m^2 >= 0,
-- where x is a positive integer
--
integerRoot2' 0 x (x `div` 2) x
where
integerRoot2' lo hi r y
| c > y = integerRoot2' lo r ((r + lo) `div` 2) y
| c == y = r
| otherwise =
if (r+1)^2 > y then
r
else
integerRoot2' r hi ((r + hi) `div` 2) y
where c = r^2
-------------------------------------------------------------------
-- Everything below is the instantiation of class Transcendental
-- for type Rational. See also modules Cofra and Numerus.
--
-- Category: Constants
-------------------------------------------------------------------
pi :: Rational -> Rational
pi eps =
--
-- pi with accuracy eps
--
-- Based on Ramanujan formula, as described in Ref. 3
-- Accuracy: extremely good, 10^-19 for one term of continued
-- fraction
--
(sqrt eps d) / (approxCF eps (fromTaylorToCF s x))
where
x = 1%(640320^3)::Rational
s = [((-1)^k*(fac (6*k))%((fac k)^3*(fac (3*k))))*((a*k+b)%c) | k<-[0..]]
a = 545140134
b = 13591409
c = 426880
d = 10005
---------------------------------------------------------------------
-- Category: Trigonometry
---------------------------------------------------------------------
tan :: Rational -> Rational -> Rational
tan eps 0 = 0
tan eps x
--
-- Tangent x computed with accuracy of eps.
--
-- Trigonometric identities are used first to reduce
-- the value of x to a value from within the range of [-pi/2,pi/2]
--
| x >= half_pi' = tan eps (x - ((1+m)%1)*xpi)
| x <= -half_pi' = tan eps (x + ((1+m)%1)*xpi)
--- | absx > 1 = 2 * t/(1 - t^2)
| otherwise = approxCF eps (cf x)
where
absx = abs x
t = tan eps (x/2)
m = floor ((absx - half_pi)/ xpi)
xpi = pi eps
half_pi'= 158%100
half_pi = xpi * (1%2)
cf u = ((0%1,1%1):[((2*r + 1)/u, -1) | r <- [0..]])
sin :: Rational -> Rational -> Rational
sin eps 0 = 0
sin eps x = 2*t/(1 + t*t)
where
t = tan eps (x/2)
cos :: Rational -> Rational -> Rational
cos eps 0 = 1
cos eps x = (1 - p)/(1 + p)
where
t = tan eps (x/2)
p = t*t
atan :: Rational -> Rational -> Rational
atan eps x
--
-- Inverse tangent of x with approximation eps
--
| x == 0 = 0
| x > 1 = (pi eps)/2 - atan eps (1/x)
| x < -1 = -(pi eps)/2 - atan eps (1/x)
| otherwise = approxCF eps ((0,x):[((2*m - 1),(m*x)^2) | m<- [1..]])
asin :: Rational -> Rational -> Rational
asin eps x
--
-- Inverse sine of x with approximation eps
--
| x == 0 = 0
| abs x > 1 = error "Fraction.asin"
| x == 1 = (pi eps) * (1%2)
| x == -1 = (pi eps) * (-1%2)
| otherwise = atan eps (x / (sqrt eps (1 - x^2)))
acos :: Rational -> Rational -> Rational
acos eps x
--
-- Inverse cosine of x with approximation eps
--
| x == 0 = (pi eps)*(1%2)
| abs x > 1 = error "Fraction.sin"
| x == 1 = 0
| x == -1 = pi eps
| otherwise = atan eps ((sqrt eps (1 - x^2)) / x)
---------------------------------------------------------------------
-- Category: Roots
---------------------------------------------------------------------
sqrt :: Rational -> Rational -> Rational
sqrt eps x
--
-- Square root of x with approximation eps
--
-- The CF pattern is: [(m,x-m^2),(2m,x-m^2),(2m,x-m^2)....]
-- where m is the biggest integer such that x-m^2 >= 0
--
| x < 0 = error "Fraction.sqrt"
| x == 0 = 0
| x < 1 = 1/(sqrt eps (1/x))
| otherwise = approxCF eps ((m,x-m^2):[(2*m,x-m^2) | r<-[0..]])
where
m = (integerRoot2 (floor x))%1
---------------------------------------------------------------------
-- Category: Exponentials and hyperbolics
---------------------------------------------------------------------
exp :: Rational -> Rational -> Rational
exp eps x
--
-- Exponent of x with approximation eps
--
-- Based on Jacobi type continued fraction for exponential,
-- with fractional terms:
-- n == 0 ==> (1,x)
-- n == 1 ==> (1 -x/2, x^2/12)
-- n >= 2 ==> (1, x^2/(16*n^2 - 4))
-- For x outside [-1,1] apply identity exp(x) = (exp(x/2))^2
--
| x == 0 = 1
| x > 1 = (approxCF eps (f (x*(1%p))))^p
| x < (-1) = (approxCF eps (f (x*(1%q))))^q
| otherwise = approxCF eps (f x)
where
p = ceiling x
q = -(floor x)
f y = (1,y):(1-y/2,y^2/12):[(1,y^2/(16*n^2-4)) | n<-[2..]]
cosh :: Rational -> Rational -> Rational
cosh eps x =
--
-- Hyperbolic cosine with approximation eps
--
(a + b)*(1%2)
where
a = exp eps x
b = 1/a
sinh :: Rational -> Rational -> Rational
sinh eps x =
--
-- Hyperbolic sine with approximation eps
--
(a - b)*(1%2)
where
a = exp eps x
b = 1/a
tanh :: Rational -> Rational -> Rational
tanh eps x =
--
-- Hyperbolic tangent with approximation eps
--
(a - b)/ (a + b)
where
a = exp eps x
b = 1/a
atanh :: Rational -> Rational -> Rational
atanh eps x
--
-- Inverse hyperbolic tangent with approximation eps
--
-- | x >= 1 = 1%0
-- | x <= -1 = -1%0
| otherwise = (1%2) * (log eps ((1 + x) / (1 - x)))
asinh :: Rational -> Rational -> Rational
asinh eps x
--
-- Inverse hyperbolic sine
--
-- | x == 1%0 = 1%0
-- | x == -1%0 = -1%0
| otherwise = log eps (x + (sqrt eps (x^2 + 1)))
acosh :: Rational -> Rational -> Rational
acosh eps x
--
-- Inverse hyperbolic cosine
--
-- | x == 1%0 = 1%0
-- | x < 1 = 1%0
| otherwise = log eps (x + (sqrt eps (x^2 - 1)))
---------------------------------------------------------------------
-- Category: Logarithms
---------------------------------------------------------------------
log :: Rational -> Rational -> Rational
log eps x
--
-- Natural logarithm of strictly positive x
--
-- Based on Stieltjes type continued fraction for log (1+y)
-- (0,y):(1,y/2):[(1,my/(4m+2)),(1,(m+1)y/(4m+2)),....
-- (m >= 1, two elements per m)
-- Efficient only for x close to one. For larger x we recursively
-- apply the identity log(x) = log(x/2) + log(2)
--
| x <= 0 = error "Fraction.log"
| x < 1 = -log eps (1/x)
| x == 1 = 0
| otherwise =
case (scaled (x,0)) of
(1,s) -> (s%1) * approxCF eps (series 1)
(y,0) -> approxCF eps (series (y-1))
(y,s) -> approxCF eps (series (y-1)) + (s%1)*approxCF eps (series 1)
where
series :: Rational -> CF
series u = (0,u):(1,u/2):[(1,u*((m+n)%(4*m + 2)))|m<-[1..],n<-[0,1]]
scaled :: (Rational,Integer) -> (Rational, Integer)
scaled (x, n)
| x == 2 = (1,n+1)
| x < 2 = (x, n)
| otherwise = scaled (x*(1%2), n+1)
---------------------------------------------------------------------------
-- References:
--
-- 1. Classical Gosper notes on continued fraction arithmetic:
-- http:%www.inwap.com/pdp10/hbaker/hakmem/cf.html
-- 2. Pages on numerical constants represented as continued fractions:
-- http:%www.mathsoft.com/asolve/constant/cntfrc/cntfrc.html
-- 3. "Efficient on-line computation of real functions using exact floating
-- point", by Peter John Potts, Imperial College
-- http:%theory.doc.ic.ac.uk/~pjp/ieee.html
--------------------------------------------------------------------------
--------------------------------------------------------------------------
-- The following representation of continued fractions is used:
--
-- Continued fraction: CF representation:
-- ================== ====================
-- b0 + a0
-- ------- ==> [(b0, a0), (b1, a1), (b2, a2).....]
-- b1 + a1
-- -------
-- b2 + ...
--
-- where "a's" and "b's" are Rationals.
--
-- Many continued fractions could be represented by much simpler form
-- [b1,b2,b3,b4..], where all coefficients "a" would have the same value 1
-- and would not need to be explicitely listed; and the coefficients "b"
-- could be chosen as integers.
-- However, there are some useful continued fractions that are
-- given with fraction coefficients: "a", "b" or both.
-- A fractional form can always be converted to an integer form, but
-- a conversion process is not always simple and such an effort is not
-- always worth of the achieved savings in the storage space or the
-- computational efficiency.
--
----------------------------------------------------------------------------
--
-- Copyright:
--
-- (C) 1998 Numeric Quest, All rights reserved
--
-- <jans@numeric-quest.com>
--
-- http://www.numeric-quest.com
--
-- License:
--
-- GNU General Public License, GPL
--
-----------------------------------------------------------------------------
|