1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeFamilies #-}
-- | An 'OSet' behaves much like a 'Set', with mostly the same asymptotics, but
-- also remembers the order that values were inserted. All operations whose
-- asymptotics are worse than 'Set' have documentation saying so.
module Data.Set.Ordered
( OSet
-- * Trivial sets
, empty, singleton
-- * Insertion
-- | Conventions:
--
-- * The open side of an angle bracket points to an 'OSet'
--
-- * The pipe appears on the side whose indices take precedence for keys that appear on both sides
--
-- * The left argument's indices are lower than the right argument's indices
, (<|), (|<), (>|), (|>)
, (<>|), (|<>)
, Bias(Bias, unbiased), L, R
-- * Query
, null, size, member, notMember
-- * Deletion
, delete, filter, (\\), (|/\), (/\|)
-- * Indexing
, Index, findIndex, elemAt
-- * List conversions
, fromList, toAscList
-- * 'Set' conversion
, toSet
) where
import Control.Monad (guard)
import Data.Data
import Data.Foldable (Foldable, foldl', foldMap, foldr, toList)
import Data.Function (on)
import Data.Hashable (Hashable(..))
import Data.Map (Map)
import Data.Map.Util
import Data.Monoid (Monoid(..))
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup (Semigroup(..))
#endif
import Data.Set (Set) -- so the haddocks link to the right place
import Prelude hiding (filter, foldr, lookup, null)
import qualified Data.Map as M
import qualified GHC.Exts as Exts
data OSet a = OSet !(Map a Tag) !(Map Tag a)
deriving Typeable -- ^ @since 0.2
-- | Values appear in insertion order, not ascending order.
instance Foldable OSet where foldMap f (OSet _ vs) = foldMap f vs
instance Eq a => Eq (OSet a) where (==) = (==) `on` toList
instance Ord a => Ord (OSet a) where compare = compare `on` toList
instance Show a => Show (OSet a) where showsPrec = showsPrecList toList
instance (Ord a, Read a) => Read (OSet a) where readsPrec = readsPrecList fromList
-- | @since 0.2.4
instance Hashable a => Hashable (OSet a) where hashWithSalt s = hashWithSalt s . toList
-- This instance preserves data abstraction at the cost of inefficiency.
-- We provide limited reflection services for the sake of data abstraction.
-- | @since 0.2
instance (Data a, Ord a) => Data (OSet a) where
gfoldl f z set = z fromList `f` toList set
toConstr _ = fromListConstr
gunfold k z c = case constrIndex c of
1 -> k (z fromList)
_ -> error "gunfold"
dataTypeOf _ = oSetDataType
-- dataCast1 /must/ be eta-expanded in order to build on GHC 7.8.
dataCast1 f = gcast1 f
fromListConstr :: Constr
fromListConstr = mkConstr oSetDataType "fromList" [] Prefix
oSetDataType :: DataType
oSetDataType = mkDataType "Data.Set.Ordered.Set" [fromListConstr]
-- | @'GHC.Exts.fromList' = 'fromList'@ and @'GHC.Exts.toList' = 'toList'@.
--
-- @since 0.2.4
instance Ord a => Exts.IsList (OSet a) where
type Item (OSet a) = a
fromList = fromList
toList = toList
#if MIN_VERSION_base(4,9,0)
-- | @since 0.2
instance Ord a => Semigroup (Bias L (OSet a)) where Bias o <> Bias o' = Bias (o |<> o')
-- | @since 0.2
instance Ord a => Semigroup (Bias R (OSet a)) where Bias o <> Bias o' = Bias (o <>| o')
#endif
-- | Empty sets and set union. When combining two sets that share elements, the
-- indices of the left argument are preferred.
--
-- See the asymptotics of ('|<>').
--
-- @since 0.2
instance Ord a => Monoid (Bias L (OSet a)) where
mempty = Bias empty
mappend (Bias o) (Bias o') = Bias (o |<> o')
-- | Empty sets and set union. When combining two sets that share elements, the
-- indices of the right argument are preferred.
--
-- See the asymptotics of ('<>|').
--
-- @since 0.2
instance Ord a => Monoid (Bias R (OSet a)) where
mempty = Bias empty
mappend (Bias o) (Bias o') = Bias (o <>| o')
infixr 5 <|, |< -- copy :
infixl 5 >|, |>
infixr 6 <>|, |<> -- copy <>
(<|) , (|<) :: Ord a => a -> OSet a -> OSet a
(>|) , (|>) :: Ord a => OSet a -> a -> OSet a
-- | /O(m*log(n)+n)/, where /m/ is the size of the smaller set and /n/ is the
-- size of the larger set.
(<>|) :: Ord a => OSet a -> OSet a -> OSet a
-- | /O(m*log(n)+n)/, where /m/ is the size of the smaller set and /n/ is the
-- size of the larger set.
(|<>) :: Ord a => OSet a -> OSet a -> OSet a
v <| o@(OSet ts vs)
| v `member` o = o
| otherwise = OSet (M.insert v t ts) (M.insert t v vs) where
t = nextLowerTag vs
v |< o = OSet (M.insert v t ts) (M.insert t v vs) where
t = nextLowerTag vs
OSet ts vs = delete v o
o@(OSet ts vs) |> v
| v `member` o = o
| otherwise = OSet (M.insert v t ts) (M.insert t v vs) where
t = nextHigherTag vs
o >| v = OSet (M.insert v t ts) (M.insert t v vs) where
t = nextHigherTag vs
OSet ts vs = delete v o
o <>| o' = unsafeMappend (o \\ o') o'
o |<> o' = unsafeMappend o (o' \\ o)
-- assumes that ts and ts' have disjoint keys
unsafeMappend (OSet ts vs) (OSet ts' vs')
= OSet (M.union tsBumped tsBumped')
(M.union vsBumped vsBumped')
where
bump = case maxTag vs of
Nothing -> 0
Just k -> -k-1
bump' = case minTag vs' of
Nothing -> 0
Just k -> -k
tsBumped = fmap (bump +) ts
tsBumped' = fmap (bump'+) ts'
vsBumped = (bump +) `M.mapKeysMonotonic` vs
vsBumped' = (bump'+) `M.mapKeysMonotonic` vs'
-- | Set difference: @r \\\\ s@ deletes all the values in @s@ from @r@. The
-- order of @r@ is unchanged.
--
-- /O(m*log(n))/ where /m/ is the size of the smaller set and /n/ is the size
-- of the larger set.
(\\) :: Ord a => OSet a -> OSet a -> OSet a
o@(OSet ts vs) \\ o'@(OSet ts' vs') = if size o < size o'
then filter (`notMember` o') o
else foldr delete o vs'
-- | Intersection. (@/\\@ is meant to look a bit like the standard mathematical
-- notation for intersection.)
--
-- /O(m*log(n\/(m+1)) + r*log(r))/, where /m/ is the size of the smaller set,
-- /n/ the size of the larger set, and /r/ the size of the result.
--
-- @since 0.2
(|/\) :: Ord a => OSet a -> OSet a -> OSet a
OSet ts vs |/\ OSet ts' vs' = OSet ts'' vs'' where
ts'' = M.intersection ts ts'
vs'' = M.fromList [(t, v) | (v, t) <- M.toList ts'']
-- | @flip ('|/\')@
--
-- See asymptotics of '|/\'.
--
-- @since 0.2
(/\|) :: Ord a => OSet a -> OSet a -> OSet a
(/\|) = flip (|/\)
empty :: OSet a
empty = OSet M.empty M.empty
member, notMember :: Ord a => a -> OSet a -> Bool
member v (OSet ts _) = M.member v ts
notMember v (OSet ts _) = M.notMember v ts
size :: OSet a -> Int
size (OSet ts _) = M.size ts
-- the Ord constraint is for compatibility with older (<0.5) versions of
-- containers
filter :: Ord a => (a -> Bool) -> OSet a -> OSet a
filter f (OSet ts vs) = OSet (M.filterWithKey (\v t -> f v) ts)
(M.filterWithKey (\t v -> f v) vs)
delete :: Ord a => a -> OSet a -> OSet a
delete v o@(OSet ts vs) = case M.lookup v ts of
Nothing -> o
Just t -> OSet (M.delete v ts) (M.delete t vs)
singleton :: a -> OSet a
singleton v = OSet (M.singleton v 0) (M.singleton 0 v)
-- | If a value occurs multiple times, only the first occurrence is used.
fromList :: Ord a => [a] -> OSet a
fromList = foldl' (|>) empty
null :: OSet a -> Bool
null (OSet ts _) = M.null ts
findIndex :: Ord a => a -> OSet a -> Maybe Index
findIndex v o@(OSet ts vs) = do
t <- M.lookup v ts
M.lookupIndex t vs
elemAt :: OSet a -> Index -> Maybe a
elemAt o@(OSet ts vs) i = do
guard (0 <= i && i < M.size vs)
return . snd $ M.elemAt i vs
-- | Returns values in ascending order. (Use 'toList' to return them in
-- insertion order.)
toAscList :: OSet a -> [a]
toAscList o@(OSet ts _) = fmap fst (M.toAscList ts)
-- | Convert an 'OSet' to a 'Set'.
--
-- /O(n)/, where /n/ is the size of the 'OSet'.
--
-- @since 0.2.2
toSet :: OSet a -> Set a
toSet (OSet ts _) = M.keysSet ts
|