1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# OPTIONS_GHC -fno-warn-name-shadowing -fexpose-all-unfoldings #-}
-- |
-- Module : System.OsString.Data.ByteString.Short.Word16
-- Copyright : © 2022 Julian Ospald
-- License : MIT
--
-- Maintainer : Julian Ospald <hasufell@posteo.de>
-- Stability : experimental
-- Portability : portable
--
-- ShortByteStrings encoded as UTF16-LE, suitable for windows FFI calls.
--
-- Word16s are *always* in BE encoding (both input and output), so e.g. 'pack'
-- takes a list of BE encoded @[Word16]@ and produces a UTF16-LE encoded ShortByteString.
--
-- Likewise, 'unpack' takes a UTF16-LE encoded ShortByteString and produces a list of BE encoded @[Word16]@.
--
-- Indices and lengths are always in respect to Word16, not Word8.
--
-- All functions will error out if the input string is not a valid UTF16 stream (uneven number of bytes).
-- So use this module with caution.
module System.OsString.Data.ByteString.Short.Word16 (
-- * The @ShortByteString@ type and representation
ShortByteString(..),
-- * Introducing and eliminating 'ShortByteString's
empty,
singleton,
pack,
unpack,
fromShort,
toShort,
-- * Basic interface
snoc,
cons,
append,
last,
tail,
uncons,
uncons2,
head,
init,
unsnoc,
null,
length,
numWord16,
-- * Transforming ShortByteStrings
map,
reverse,
intercalate,
-- * Reducing 'ShortByteString's (folds)
foldl,
foldl',
foldl1,
foldl1',
foldr,
foldr',
foldr1,
foldr1',
-- ** Special folds
all,
any,
concat,
-- ** Generating and unfolding ByteStrings
replicate,
unfoldr,
unfoldrN,
-- * Substrings
-- ** Breaking strings
take,
takeEnd,
takeWhileEnd,
takeWhile,
drop,
dropEnd,
dropWhile,
dropWhileEnd,
breakEnd,
break,
span,
spanEnd,
splitAt,
split,
splitWith,
stripSuffix,
stripPrefix,
-- * Predicates
isInfixOf,
isPrefixOf,
isSuffixOf,
-- ** Search for arbitrary substrings
breakSubstring,
-- * Searching ShortByteStrings
-- ** Searching by equality
elem,
-- ** Searching with a predicate
find,
filter,
partition,
-- * Indexing ShortByteStrings
index,
indexMaybe,
(!?),
elemIndex,
elemIndices,
count,
findIndex,
findIndices,
-- ** Encoding validation
-- isValidUtf8,
-- * Low level conversions
-- ** Packing 'CString's and pointers
packCWString,
packCWStringLen,
newCWString,
-- ** Using ShortByteStrings as 'CString's
useAsCWString,
useAsCWStringLen
)
where
import System.OsString.Data.ByteString.Short ( append, intercalate, concat, stripSuffix, stripPrefix, isPrefixOf, isSuffixOf, length, empty, null, ShortByteString(..), fromShort, toShort )
import System.OsString.Data.ByteString.Short.Internal
import Data.Bits
( shiftR
)
import Data.Word
import Prelude hiding
( Foldable(..)
, all
, any
, reverse
, break
, concat
, drop
, dropWhile
, filter
, head
, init
, last
, map
, replicate
, span
, splitAt
, tail
, take
, takeWhile
)
import qualified Data.Foldable as Foldable
import GHC.ST ( ST )
import GHC.Stack ( HasCallStack )
import GHC.Exts ( inline )
import qualified Data.ByteString.Short.Internal as BS
import qualified Data.List as List
-- -----------------------------------------------------------------------------
-- Introducing and eliminating 'ShortByteString's
-- | /O(1)/ Convert a 'Word16' into a 'ShortByteString'
singleton :: Word16 -> ShortByteString
singleton = \w -> create 2 (\mba -> writeWord16Array mba 0 w)
-- | /O(n)/. Convert a list into a 'ShortByteString'
pack :: [Word16] -> ShortByteString
pack = packWord16
-- | /O(n)/. Convert a 'ShortByteString' into a list.
unpack :: ShortByteString -> [Word16]
unpack = unpackWord16 . assertEven
-- ---------------------------------------------------------------------
-- Basic interface
-- | This is like 'length', but the number of 'Word16', not 'Word8'.
numWord16 :: ShortByteString -> Int
numWord16 = (`shiftR` 1) . BS.length . assertEven
infixr 5 `cons` --same as list (:)
infixl 5 `snoc`
-- | /O(n)/ Append a Word16 to the end of a 'ShortByteString'
--
-- Note: copies the entire byte array
snoc :: ShortByteString -> Word16 -> ShortByteString
snoc = \(assertEven -> sbs) c -> let l = BS.length sbs
nl = l + 2
in create nl $ \mba -> do
copyByteArray (asBA sbs) 0 mba 0 l
writeWord16Array mba l c
-- | /O(n)/ 'cons' is analogous to (:) for lists.
--
-- Note: copies the entire byte array
cons :: Word16 -> ShortByteString -> ShortByteString
cons c = \(assertEven -> sbs) -> let l = BS.length sbs
nl = l + 2
in create nl $ \mba -> do
writeWord16Array mba 0 c
copyByteArray (asBA sbs) 0 mba 2 l
-- | /O(1)/ Extract the last element of a ShortByteString, which must be finite and at least one Word16.
-- An exception will be thrown in the case of an empty ShortByteString.
last :: HasCallStack => ShortByteString -> Word16
last = \(assertEven -> sbs) -> case null sbs of
True -> errorEmptySBS "last"
False -> indexWord16Array (asBA sbs) (BS.length sbs - 2)
-- | /O(n)/ Extract the elements after the head of a ShortByteString, which must at least one Word16.
-- An exception will be thrown in the case of an empty ShortByteString.
--
-- Note: copies the entire byte array
tail :: HasCallStack => ShortByteString -> ShortByteString
tail = \(assertEven -> sbs) ->
let l = BS.length sbs
nl = l - 2
in if
| l <= 0 -> errorEmptySBS "tail"
| otherwise -> create nl $ \mba -> copyByteArray (asBA sbs) 2 mba 0 nl
-- | /O(n)/ Extract the head and tail of a ByteString, returning Nothing
-- if it is empty.
uncons :: ShortByteString -> Maybe (Word16, ShortByteString)
uncons = \(assertEven -> sbs) ->
let l = BS.length sbs
nl = l - 2
in if | l <= 0 -> Nothing
| otherwise -> let h = indexWord16Array (asBA sbs) 0
t = create nl $ \mba -> copyByteArray (asBA sbs) 2 mba 0 nl
in Just (h, t)
-- | /O(n)/ Extract first two elements and the rest of a ByteString,
-- returning Nothing if it is shorter than two elements.
uncons2 :: ShortByteString -> Maybe (Word16, Word16, ShortByteString)
uncons2 = \(assertEven -> sbs) ->
let l = BS.length sbs
nl = l - 4
in if | l <= 2 -> Nothing
| otherwise -> let h = indexWord16Array (asBA sbs) 0
h' = indexWord16Array (asBA sbs) 2
t = create nl $ \mba -> copyByteArray (asBA sbs) 4 mba 0 nl
in Just (h, h', t)
-- | /O(1)/ Extract the first element of a ShortByteString, which must be at least one Word16.
-- An exception will be thrown in the case of an empty ShortByteString.
head :: HasCallStack => ShortByteString -> Word16
head = \(assertEven -> sbs) -> case null sbs of
True -> errorEmptySBS "last"
False -> indexWord16Array (asBA sbs) 0
-- | /O(n)/ Return all the elements of a 'ShortByteString' except the last one.
-- An exception will be thrown in the case of an empty ShortByteString.
--
-- Note: copies the entire byte array
init :: HasCallStack => ShortByteString -> ShortByteString
init = \(assertEven -> sbs) ->
let l = BS.length sbs
nl = l - 2
in if
| l <= 0 -> errorEmptySBS "tail"
| otherwise -> create nl $ \mba -> copyByteArray (asBA sbs) 0 mba 0 nl
-- | /O(n)/ Extract the 'init' and 'last' of a ByteString, returning Nothing
-- if it is empty.
unsnoc :: ShortByteString -> Maybe (ShortByteString, Word16)
unsnoc = \(assertEven -> sbs) ->
let l = BS.length sbs
nl = l - 2
in if | l <= 0 -> Nothing
| otherwise -> let l' = indexWord16Array (asBA sbs) (l - 2)
i = create nl $ \mba -> copyByteArray (asBA sbs) 0 mba 0 nl
in Just (i, l')
-- ---------------------------------------------------------------------
-- Transformations
-- | /O(n)/ 'map' @f xs@ is the ShortByteString obtained by applying @f@ to each
-- element of @xs@.
map :: (Word16 -> Word16) -> ShortByteString -> ShortByteString
map f = \(assertEven -> sbs) ->
let l = BS.length sbs
ba = asBA sbs
in create l (\mba -> go ba mba 0 l)
where
go :: BA -> MBA s -> Int -> Int -> ST s ()
go !ba !mba !i !l
| i >= l = return ()
| otherwise = do
let w = indexWord16Array ba i
writeWord16Array mba i (f w)
go ba mba (i+2) l
-- TODO: implement more efficiently
-- | /O(n)/ 'reverse' @xs@ efficiently returns the elements of @xs@ in reverse order.
reverse :: ShortByteString -> ShortByteString
reverse = \(assertEven -> sbs) ->
let l = BS.length sbs
ba = asBA sbs
in create l (\mba -> go ba mba 0 l)
where
go :: BA -> MBA s -> Int -> Int -> ST s ()
go !ba !mba !i !l
| i >= l = return ()
| otherwise = do
let w = indexWord16Array ba i
writeWord16Array mba (l - 2 - i) w
go ba mba (i+2) l
-- ---------------------------------------------------------------------
-- Special folds
-- | /O(n)/ Applied to a predicate and a 'ShortByteString', 'all' determines
-- if all elements of the 'ShortByteString' satisfy the predicate.
all :: (Word16 -> Bool) -> ShortByteString -> Bool
all k = \(assertEven -> sbs) ->
let l = BS.length sbs
ba = asBA sbs
w = indexWord16Array ba
go !n | n >= l = True
| otherwise = k (w n) && go (n + 2)
in go 0
-- | /O(n)/ Applied to a predicate and a ByteString, 'any' determines if
-- any element of the 'ByteString' satisfies the predicate.
any :: (Word16 -> Bool) -> ShortByteString -> Bool
any k = \(assertEven -> sbs) ->
let l = BS.length sbs
ba = asBA sbs
w = indexWord16Array ba
go !n | n >= l = False
| otherwise = k (w n) || go (n + 2)
in go 0
-- ---------------------------------------------------------------------
-- Unfolds and replicates
-- | /O(n)/ 'replicate' @n x@ is a ByteString of length @n@ with @x@
-- the value of every element. The following holds:
--
-- > replicate w c = unfoldr w (\u -> Just (u,u)) c
replicate :: Int -> Word16 -> ShortByteString
replicate w c
| w <= 0 = empty
-- can't use setByteArray here, because we write UTF-16LE
| otherwise = create (w * 2) (`go` 0)
where
go mba ix
| ix < 0 || ix >= w * 2 = pure ()
| otherwise = writeWord16Array mba ix c >> go mba (ix + 2)
-- | /O(n)/, where /n/ is the length of the result. The 'unfoldr'
-- function is analogous to the List \'unfoldr\'. 'unfoldr' builds a
-- ShortByteString from a seed value. The function takes the element and
-- returns 'Nothing' if it is done producing the ShortByteString or returns
-- 'Just' @(a,b)@, in which case, @a@ is the next byte in the string,
-- and @b@ is the seed value for further production.
--
-- This function is not efficient/safe. It will build a list of @[Word16]@
-- and run the generator until it returns `Nothing`, otherwise recurse infinitely,
-- then finally create a 'ShortByteString'.
--
-- Examples:
--
-- > unfoldr (\x -> if x <= 5 then Just (x, x + 1) else Nothing) 0
-- > == pack [0, 1, 2, 3, 4, 5]
--
unfoldr :: (a -> Maybe (Word16, a)) -> a -> ShortByteString
unfoldr f x0 = packWord16Rev $ go x0 mempty
where
go x words' = case f x of
Nothing -> words'
Just (w, x') -> go x' (w:words')
-- | /O(n)/ Like 'unfoldr', 'unfoldrN' builds a ShortByteString from a seed
-- value. However, the length of the result is limited by the first
-- argument to 'unfoldrN'. This function is more efficient than 'unfoldr'
-- when the maximum length of the result is known.
--
-- The following equation relates 'unfoldrN' and 'unfoldr':
--
-- > fst (unfoldrN n f s) == take n (unfoldr f s)
--
unfoldrN :: forall a.
Int -- ^ number of 'Word16'
-> (a -> Maybe (Word16, a))
-> a
-> (ShortByteString, Maybe a)
unfoldrN i f = \x0 ->
if | i < 0 -> (empty, Just x0)
| otherwise -> createAndTrim (i * 2) $ \mba -> go mba x0 0
where
go :: forall s. MBA s -> a -> Int -> ST s (Int, Maybe a)
go !mba !x !n = go' x n
where
go' :: a -> Int -> ST s (Int, Maybe a)
go' !x' !n'
| n' == i * 2 = return (n', Just x')
| otherwise = case f x' of
Nothing -> return (n', Nothing)
Just (w, x'') -> do
writeWord16Array mba n' w
go' x'' (n'+2)
-- --------------------------------------------------------------------
-- Predicates
-- ---------------------------------------------------------------------
-- Substrings
-- | /O(n)/ 'take' @n@, applied to a ShortByteString @xs@, returns the prefix
-- of @xs@ of length @n@, or @xs@ itself if @n > 'length' xs@.
--
-- Note: copies the entire byte array
take :: Int -- ^ number of Word16
-> ShortByteString
-> ShortByteString
take = \n (assertEven -> sbs) ->
let sl = numWord16 sbs
len8 = n * 2
in if | n >= sl -> sbs
| n <= 0 -> empty
| otherwise ->
create len8 $ \mba -> copyByteArray (asBA sbs) 0 mba 0 len8
-- | /O(1)/ @'takeEnd' n xs@ is equivalent to @'drop' ('length' xs - n) xs@.
-- Takes @n@ elements from end of bytestring.
--
-- >>> takeEnd 3 "a\NULb\NULc\NULd\NULe\NULf\NULg\NUL"
-- "e\NULf\NULg\NUL"
-- >>> takeEnd 0 "a\NULb\NULc\NULd\NULe\NULf\NULg\NUL"
-- ""
-- >>> takeEnd 4 "a\NULb\NULc\NUL"
-- "a\NULb\NULc\NUL"
takeEnd :: Int -- ^ number of 'Word16'
-> ShortByteString
-> ShortByteString
takeEnd n = \(assertEven -> sbs) ->
let sl = BS.length sbs
n2 = n * 2
in if | n2 >= sl -> sbs
| n2 <= 0 -> empty
| otherwise -> create n2 $ \mba -> copyByteArray (asBA sbs) (max 0 (sl - n2)) mba 0 n2
-- | Similar to 'P.takeWhile',
-- returns the longest (possibly empty) prefix of elements
-- satisfying the predicate.
takeWhile :: (Word16 -> Bool) -> ShortByteString -> ShortByteString
takeWhile f ps = take (findIndexOrLength (not . f) ps) ps
-- | Returns the longest (possibly empty) suffix of elements
-- satisfying the predicate.
--
-- @'takeWhileEnd' p@ is equivalent to @'reverse' . 'takeWhile' p . 'reverse'@.
takeWhileEnd :: (Word16 -> Bool) -> ShortByteString -> ShortByteString
takeWhileEnd f ps = drop (findFromEndUntil (not . f) ps) ps
-- | /O(n)/ 'drop' @n@ @xs@ returns the suffix of @xs@ after the first n elements, or @[]@ if @n > 'length' xs@.
--
-- Note: copies the entire byte array
drop :: Int -- ^ number of 'Word16'
-> ShortByteString
-> ShortByteString
drop = \n' (assertEven -> sbs) ->
let len = BS.length sbs
n = n' * 2
in if | n <= 0 -> sbs
| n >= len -> empty
| otherwise ->
let newLen = len - n
in create newLen $ \mba -> copyByteArray (asBA sbs) n mba 0 newLen
-- | /O(1)/ @'dropEnd' n xs@ is equivalent to @'take' ('length' xs - n) xs@.
-- Drops @n@ elements from end of bytestring.
--
-- >>> dropEnd 3 "a\NULb\NULc\NULd\NULe\NULf\NULg\NUL"
-- "a\NULb\NULc\NULd\NUL"
-- >>> dropEnd 0 "a\NULb\NULc\NULd\NULe\NULf\NULg\NUL"
-- "a\NULb\NULc\NULd\NULe\NULf\NULg\NUL"
-- >>> dropEnd 4 "a\NULb\NULc\NUL"
-- ""
dropEnd :: Int -- ^ number of 'Word16'
-> ShortByteString
-> ShortByteString
dropEnd n' = \(assertEven -> sbs) ->
let sl = BS.length sbs
nl = sl - n
n = n' * 2
in if | n >= sl -> empty
| n <= 0 -> sbs
| otherwise -> create nl $ \mba -> copyByteArray (asBA sbs) 0 mba 0 nl
-- | Similar to 'P.dropWhile',
-- drops the longest (possibly empty) prefix of elements
-- satisfying the predicate and returns the remainder.
--
-- Note: copies the entire byte array
dropWhile :: (Word16 -> Bool) -> ShortByteString -> ShortByteString
dropWhile f = \(assertEven -> ps) -> drop (findIndexOrLength (not . f) ps) ps
-- | Similar to 'P.dropWhileEnd',
-- drops the longest (possibly empty) suffix of elements
-- satisfying the predicate and returns the remainder.
--
-- @'dropWhileEnd' p@ is equivalent to @'reverse' . 'dropWhile' p . 'reverse'@.
--
-- @since 0.10.12.0
dropWhileEnd :: (Word16 -> Bool) -> ShortByteString -> ShortByteString
dropWhileEnd f = \(assertEven -> ps) -> take (findFromEndUntil (not . f) ps) ps
-- | Returns the longest (possibly empty) suffix of elements which __do not__
-- satisfy the predicate and the remainder of the string.
--
-- 'breakEnd' @p@ is equivalent to @'spanEnd' (not . p)@ and to @('takeWhileEnd' (not . p) &&& 'dropWhileEnd' (not . p))@.
breakEnd :: (Word16 -> Bool) -> ShortByteString -> (ShortByteString, ShortByteString)
breakEnd p = \(assertEven -> sbs) -> splitAt (findFromEndUntil p sbs) sbs
-- | Similar to 'P.break',
-- returns the longest (possibly empty) prefix of elements which __do not__
-- satisfy the predicate and the remainder of the string.
--
-- 'break' @p@ is equivalent to @'span' (not . p)@ and to @('takeWhile' (not . p) &&& 'dropWhile' (not . p))@.
break :: (Word16 -> Bool) -> ShortByteString -> (ShortByteString, ShortByteString)
break = \p (assertEven -> ps) -> case findIndexOrLength p ps of n -> splitAt n ps
-- | Similar to 'P.span',
-- returns the longest (possibly empty) prefix of elements
-- satisfying the predicate and the remainder of the string.
--
-- 'span' @p@ is equivalent to @'break' (not . p)@ and to @('takeWhile' p &&& 'dropWhile' p)@.
--
span :: (Word16 -> Bool) -> ShortByteString -> (ShortByteString, ShortByteString)
{- HLINT ignore "Use span" -}
span p = break (not . p) . assertEven
-- | Returns the longest (possibly empty) suffix of elements
-- satisfying the predicate and the remainder of the string.
--
-- 'spanEnd' @p@ is equivalent to @'breakEnd' (not . p)@ and to @('takeWhileEnd' p &&& 'dropWhileEnd' p)@.
--
-- We have
--
-- > spanEnd (not . isSpace) "x y z" == ("x y ", "z")
--
-- and
--
-- > spanEnd (not . isSpace) ps
-- > ==
-- > let (x, y) = span (not . isSpace) (reverse ps) in (reverse y, reverse x)
--
spanEnd :: (Word16 -> Bool) -> ShortByteString -> (ShortByteString, ShortByteString)
spanEnd p = \(assertEven -> ps) -> splitAt (findFromEndUntil (not.p) ps) ps
-- | /O(n)/ 'splitAt' @n xs@ is equivalent to @('take' n xs, 'drop' n xs)@.
--
-- Note: copies the substrings
splitAt :: Int -- ^ number of Word16
-> ShortByteString
-> (ShortByteString, ShortByteString)
splitAt n' = \(assertEven -> sbs) -> if
| n <= 0 -> (empty, sbs)
| otherwise ->
let slen = BS.length sbs
in if | n >= BS.length sbs -> (sbs, empty)
| otherwise ->
let llen = min slen (max 0 n)
rlen = max 0 (slen - max 0 n)
lsbs = create llen $ \mba -> copyByteArray (asBA sbs) 0 mba 0 llen
rsbs = create rlen $ \mba -> copyByteArray (asBA sbs) n mba 0 rlen
in (lsbs, rsbs)
where
n = n' * 2
-- | /O(n)/ Break a 'ShortByteString' into pieces separated by the byte
-- argument, consuming the delimiter. I.e.
--
-- > split 10 "a\nb\nd\ne" == ["a","b","d","e"] -- fromEnum '\n' == 10
-- > split 97 "aXaXaXa" == ["","X","X","X",""] -- fromEnum 'a' == 97
-- > split 120 "x" == ["",""] -- fromEnum 'x' == 120
-- > split undefined "" == [] -- and not [""]
--
-- and
--
-- > intercalate [c] . split c == id
-- > split == splitWith . (==)
--
-- Note: copies the substrings
split :: Word16 -> ShortByteString -> [ShortByteString]
split w = splitWith (== w) . assertEven
-- | /O(n)/ Splits a 'ShortByteString' into components delimited by
-- separators, where the predicate returns True for a separator element.
-- The resulting components do not contain the separators. Two adjacent
-- separators result in an empty component in the output. eg.
--
-- > splitWith (==97) "aabbaca" == ["","","bb","c",""] -- fromEnum 'a' == 97
-- > splitWith undefined "" == [] -- and not [""]
--
splitWith :: (Word16 -> Bool) -> ShortByteString -> [ShortByteString]
splitWith p = \(assertEven -> sbs) -> if
| BS.null sbs -> []
| otherwise -> go sbs
where
go sbs'
| BS.null sbs' = [mempty]
| otherwise =
case break p sbs' of
(a, b)
| BS.null b -> [a]
| otherwise -> a : go (tail b)
-- | Check whether one string is a substring of another.
isInfixOf :: ShortByteString -> ShortByteString -> Bool
isInfixOf sbs = \s -> null sbs || not (null $ snd $ GHC.Exts.inline breakSubstring sbs s)
-- algorithm: https://github.com/haskell/filepath/issues/195#issuecomment-1605633713
breakSubstring :: ShortByteString -- ^ String to search for
-> ShortByteString -- ^ String to search in
-> (ShortByteString, ShortByteString) -- ^ Head and tail of string broken at substring
breakSubstring bPat@(asBA -> pat) bInp@(asBA -> inp) = go 0
where
lpat = BS.length bPat
linp = BS.length bInp
go ix
| let ix' = ix * 2
, linp >= ix' + lpat =
if | compareByteArraysOff pat 0 inp ix' lpat == 0 -> splitAt ix bInp
| otherwise -> go (ix + 1)
| otherwise
= (bInp, mempty)
-- ---------------------------------------------------------------------
-- Reducing 'ByteString's
-- | 'foldl', applied to a binary operator, a starting value (typically
-- the left-identity of the operator), and a ShortByteString, reduces the
-- ShortByteString using the binary operator, from left to right.
--
foldl :: (a -> Word16 -> a) -> a -> ShortByteString -> a
foldl f v = List.foldl f v . unpack . assertEven
-- | 'foldl'' is like 'foldl', but strict in the accumulator.
--
foldl' :: (a -> Word16 -> a) -> a -> ShortByteString -> a
foldl' f v = List.foldl' f v . unpack . assertEven
-- | 'foldr', applied to a binary operator, a starting value
-- (typically the right-identity of the operator), and a ShortByteString,
-- reduces the ShortByteString using the binary operator, from right to left.
foldr :: (Word16 -> a -> a) -> a -> ShortByteString -> a
foldr f v = List.foldr f v . unpack . assertEven
-- | 'foldr'' is like 'foldr', but strict in the accumulator.
foldr' :: (Word16 -> a -> a) -> a -> ShortByteString -> a
foldr' k v = Foldable.foldr' k v . unpack . assertEven
-- | 'foldl1' is a variant of 'foldl' that has no starting value
-- argument, and thus must be applied to non-empty 'ShortByteString's.
-- An exception will be thrown in the case of an empty ShortByteString.
foldl1 :: HasCallStack => (Word16 -> Word16 -> Word16) -> ShortByteString -> Word16
foldl1 k = List.foldl1 k . unpack . assertEven
-- | 'foldl1'' is like 'foldl1', but strict in the accumulator.
-- An exception will be thrown in the case of an empty ShortByteString.
foldl1' :: HasCallStack => (Word16 -> Word16 -> Word16) -> ShortByteString -> Word16
foldl1' k = List.foldl1' k . unpack . assertEven
-- | 'foldr1' is a variant of 'foldr' that has no starting value argument,
-- and thus must be applied to non-empty 'ShortByteString's
-- An exception will be thrown in the case of an empty ShortByteString.
foldr1 :: HasCallStack => (Word16 -> Word16 -> Word16) -> ShortByteString -> Word16
foldr1 k = List.foldr1 k . unpack . assertEven
-- | 'foldr1'' is a variant of 'foldr1', but is strict in the
-- accumulator.
foldr1' :: HasCallStack => (Word16 -> Word16 -> Word16) -> ShortByteString -> Word16
foldr1' k = \(assertEven -> sbs) -> if null sbs then errorEmptySBS "foldr1'" else foldr' k (last sbs) (init sbs)
-- --------------------------------------------------------------------
-- Searching ShortByteString
-- | /O(1)/ 'ShortByteString' index (subscript) operator, starting from 0.
index :: HasCallStack
=> ShortByteString
-> Int -- ^ number of 'Word16'
-> Word16
index = \(assertEven -> sbs) i -> if
| i >= 0 && i < numWord16 sbs -> unsafeIndex sbs i
| otherwise -> indexError sbs i
-- | /O(1)/ 'ShortByteString' index, starting from 0, that returns 'Just' if:
--
-- > 0 <= n < length bs
--
-- @since 0.11.0.0
indexMaybe :: ShortByteString
-> Int -- ^ number of 'Word16'
-> Maybe Word16
indexMaybe = \(assertEven -> sbs) i -> if
| i >= 0 && i < numWord16 sbs -> Just $! unsafeIndex sbs i
| otherwise -> Nothing
{-# INLINE indexMaybe #-}
unsafeIndex :: ShortByteString
-> Int -- ^ number of 'Word16'
-> Word16
unsafeIndex sbs i = indexWord16Array (asBA sbs) (i * 2)
indexError :: HasCallStack => ShortByteString -> Int -> a
indexError sbs i =
moduleError "index" $ "error in array index: " ++ show i
++ " not in range [0.." ++ show (numWord16 sbs) ++ "]"
-- | /O(1)/ 'ShortByteString' index, starting from 0, that returns 'Just' if:
--
-- > 0 <= n < length bs
--
-- @since 0.11.0.0
(!?) :: ShortByteString
-> Int -- ^ number of 'Word16'
-> Maybe Word16
(!?) = indexMaybe
{-# INLINE (!?) #-}
-- | /O(n)/ 'elem' is the 'ShortByteString' membership predicate.
elem :: Word16 -> ShortByteString -> Bool
elem c = \(assertEven -> sbs) -> case elemIndex c sbs of Nothing -> False ; _ -> True
-- | /O(n)/ 'filter', applied to a predicate and a ByteString,
-- returns a ByteString containing those characters that satisfy the
-- predicate.
filter :: (Word16 -> Bool) -> ShortByteString -> ShortByteString
filter k = \(assertEven -> sbs) ->
let l = BS.length sbs
in if | l <= 0 -> sbs
| otherwise -> createAndTrim' l $ \mba -> go mba (asBA sbs) l
where
go :: forall s. MBA s -- mutable output bytestring
-> BA -- input bytestring
-> Int -- length of input bytestring
-> ST s Int
go !mba ba !l = go' 0 0
where
go' :: Int -- bytes read
-> Int -- bytes written
-> ST s Int
go' !br !bw
| br >= l = return bw
| otherwise = do
let w = indexWord16Array ba br
if k w
then do
writeWord16Array mba bw w
go' (br+2) (bw+2)
else
go' (br+2) bw
-- | /O(n)/ The 'find' function takes a predicate and a ByteString,
-- and returns the first element in matching the predicate, or 'Nothing'
-- if there is no such element.
--
-- > find f p = case findIndex f p of Just n -> Just (p ! n) ; _ -> Nothing
--
find :: (Word16 -> Bool) -> ShortByteString -> Maybe Word16
find f = \(assertEven -> sbs) -> case findIndex f sbs of
Just n -> Just (sbs `index` n)
_ -> Nothing
-- | /O(n)/ The 'partition' function takes a predicate a ByteString and returns
-- the pair of ByteStrings with elements which do and do not satisfy the
-- predicate, respectively; i.e.,
--
-- > partition p bs == (filter p xs, filter (not . p) xs)
--
partition :: (Word16 -> Bool) -> ShortByteString -> (ShortByteString, ShortByteString)
partition k = \(assertEven -> sbs) ->
let l = BS.length sbs
in if | l <= 0 -> (sbs, sbs)
| otherwise -> createAndTrim'' l $ \mba1 mba2 -> go mba1 mba2 (asBA sbs) l
where
go :: forall s.
MBA s -- mutable output bytestring1
-> MBA s -- mutable output bytestring2
-> BA -- input bytestring
-> Int -- length of input bytestring
-> ST s (Int, Int) -- (length mba1, length mba2)
go !mba1 !mba2 ba !l = go' 0 0
where
go' :: Int -- bytes read
-> Int -- bytes written to bytestring 1
-> ST s (Int, Int) -- (length mba1, length mba2)
go' !br !bw1
| br >= l = return (bw1, br - bw1)
| otherwise = do
let w = indexWord16Array ba br
if k w
then do
writeWord16Array mba1 bw1 w
go' (br+2) (bw1+2)
else do
writeWord16Array mba2 (br - bw1) w
go' (br+2) bw1
-- --------------------------------------------------------------------
-- Indexing ShortByteString
-- | /O(n)/ The 'elemIndex' function returns the index of the first
-- element in the given 'ShortByteString' which is equal to the query
-- element, or 'Nothing' if there is no such element.
elemIndex :: Word16
-> ShortByteString
-> Maybe Int -- ^ number of 'Word16'
{- HLINT ignore "Use elemIndex" -}
elemIndex k = findIndex (==k) . assertEven
-- | /O(n)/ The 'elemIndices' function extends 'elemIndex', by returning
-- the indices of all elements equal to the query element, in ascending order.
elemIndices :: Word16 -> ShortByteString -> [Int]
{- HLINT ignore "Use elemIndices" -}
elemIndices k = findIndices (==k) . assertEven
-- | count returns the number of times its argument appears in the ShortByteString
count :: Word16 -> ShortByteString -> Int
count w = List.length . elemIndices w . assertEven
-- | /O(n)/ The 'findIndex' function takes a predicate and a 'ShortByteString' and
-- returns the index of the first element in the ByteString
-- satisfying the predicate.
findIndex :: (Word16 -> Bool) -> ShortByteString -> Maybe Int
findIndex k = \(assertEven -> sbs) ->
let l = BS.length sbs
ba = asBA sbs
w = indexWord16Array ba
go !n | n >= l = Nothing
| k (w n) = Just (n `shiftR` 1)
| otherwise = go (n + 2)
in go 0
-- | /O(n)/ The 'findIndices' function extends 'findIndex', by returning the
-- indices of all elements satisfying the predicate, in ascending order.
findIndices :: (Word16 -> Bool) -> ShortByteString -> [Int]
findIndices k = \(assertEven -> sbs) ->
let l = BS.length sbs
ba = asBA sbs
w = indexWord16Array ba
go !n | n >= l = []
| k (w n) = (n `shiftR` 1) : go (n + 2)
| otherwise = go (n + 2)
in go 0
|