1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
|
{-# LANGUAGE BangPatterns, CPP, MagicHash, UnboxedTuples #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
-----------------------------------------------------------------------------
-- |
-- Module : Control.Parallel.Strategies
-- Copyright : (c) The University of Glasgow 2001-2010
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Parallel Evaluation Strategies, or Strategies for short, provide
-- ways to express parallel computations. Strategies have the following
-- key features:
--
-- * Strategies express /deterministic parallelism/:
-- the result of the program is unaffected by evaluating in parallel.
-- The parallel tasks evaluated by a Strategy may have no side effects.
-- For non-deterministic parallel programming, see "Control.Concurrent".
--
-- * Strategies let you separate the description of the parallelism from the
-- logic of your program, enabling modular parallelism. The basic idea
-- is to build a lazy data structure representing the computation, and
-- then write a Strategy that describes how to traverse the data structure
-- and evaluate components of it sequentially or in parallel.
--
-- * Strategies are /compositional/: larger strategies can be built
-- by gluing together smaller ones.
--
-- * 'Monad' and 'Applicative' instances are provided, for quickly building
-- strategies that involve traversing structures in a regular way.
--
-- For API history and changes in this release, see "Control.Parallel.Strategies#history".
-----------------------------------------------------------------------------
module Control.Parallel.Strategies (
-- * The strategy type
Strategy
-- * Application of strategies
, using -- :: a -> Strategy a -> a
, withStrategy -- :: Strategy a -> a -> a
, usingIO -- :: a -> Strategy a -> IO a
, withStrategyIO -- :: Strategy a -> a -> IO a
-- * Composition of strategies
, dot -- :: Strategy a -> Strategy a -> Strategy a
-- * Basic strategies
, r0 -- :: Strategy a
, rseq
, rdeepseq -- :: NFData a => Strategy a
, rpar -- :: Strategy a
, rparWith -- :: Strategy a -> Strategy a
-- * Injection of sequential strategies
, evalSeq -- :: Seq.Strategy a -> Strategy a
, SeqStrategy
-- * Strategies for traversable data types
, evalTraversable -- :: Traversable t => Strategy a -> Strategy (t a)
, parTraversable
-- * Strategies for lists
, evalList -- :: Strategy a -> Strategy [a]
, parList
, evalListN -- :: Int -> Strategy a -> Strategy [a]
, parListN
, evalListNth -- :: Int -> Strategy a -> Strategy [a]
, parListNth
, evalListSplitAt -- :: Int -> Strategy [a] -> Strategy [a] -> Strategy [a]
, parListSplitAt
, parListChunk
, parMap
-- ** Strategies for lazy lists
, evalBuffer -- :: Int -> Strategy a -> Strategy [a]
, parBuffer
-- * Strategies for tuples
-- | Evaluate the components of a tuple according to the
-- given strategies.
, evalTuple2 -- :: Strategy a -> ... -> Strategy (a,...)
, evalTuple3
, evalTuple4
, evalTuple5
, evalTuple6
, evalTuple7
, evalTuple8
, evalTuple9
-- | Evaluate the components of a tuple in parallel according to
-- the given strategies.
, parTuple2 -- :: Strategy a -> ... -> Strategy (a,...)
, parTuple3
, parTuple4
, parTuple5
, parTuple6
, parTuple7
, parTuple8
, parTuple9
-- * Strategic function application
, ($|) -- :: (a -> b) -> Strategy a -> a -> b
, ($||)
, (.|) -- :: (b -> c) -> Strategy b -> (a -> b) -> a -> c
, (.||)
, (-|) -- :: (a -> b) -> Strategy b -> (b -> c) -> a -> c
, (-||)
-- * For Strategy programmers
, Eval -- instances: Monad, Functor, Applicative
, parEval -- :: Eval a -> Eval a
, runEval -- :: Eval a -> a
, runEvalIO -- :: Eval a -> IO a
,
-- * API History
-- $history
-- * Backwards compatibility
-- | These functions and types are all deprecated, and will be
-- removed in a future release. In all cases they have been
-- either renamed or replaced with equivalent functionality.
Done, demanding, sparking, (>|), (>||),
rwhnf, unEval,
seqTraverse, parTraverse,
seqList,
seqPair, parPair,
seqTriple, parTriple,
-- * For API completeness
-- | so users of 'rdeepseq' aren't required to import Control.DeepSeq:
NFData
) where
#if !MIN_VERSION_base(4,8,0)
import Data.Traversable
import Control.Applicative
#endif
import Control.Parallel
import Control.DeepSeq (NFData(rnf))
import Control.Monad.Fix (MonadFix (..))
#if MIN_VERSION_base(4,4,0)
import System.IO.Unsafe (unsafeDupablePerformIO)
import Control.Exception (evaluate)
#else
import System.IO.Unsafe (unsafePerformIO)
import Control.Monad
#endif
import qualified Control.Seq
import GHC.Exts
import GHC.IO (IO (..))
infixr 9 `dot` -- same as (.)
infixl 0 `using` -- lowest precedence and associate to the left
infixl 0 `usingIO` -- lowest precedence and associate to the left
-- -----------------------------------------------------------------------------
-- Eval monad (isomorphic to Lift monad from MonadLib 3.6.1)
-- | 'Eval' is a Monad that makes it easier to define parallel
-- strategies. It is a strict identity monad: that is, in
--
-- > m >>= f
--
-- @m@ is evaluated before the result is passed to @f@.
--
-- > instance Monad Eval where
-- > return = Done
-- > m >>= k = case m of
-- > Done x -> k x
--
-- If you wanted to construct a 'Strategy' for a pair that sparked the
-- first component in parallel and then evaluated the second
-- component, you could write
--
-- > myStrat :: Strategy (a,b)
-- > myStrat (a,b) = do { a' <- rpar a; b' <- rseq b; return (a',b') }
--
-- Alternatively, you could write this more compactly using the
-- Applicative style as
--
-- > myStrat (a,b) = (,) <$> rpar a <*> rseq b
-- More examples, using the Applicative instance:
--
-- > parList :: Strategy a -> Strategy [a]
-- > parList strat = traverse (rpar `dot` strat))
--
-- > evalPair :: Strategy a -> Strategy b -> Strategy (a,b)
-- > evalPair f g (a,b) = pure (,) <$> f a <*> g b
--
#if __GLASGOW_HASKELL__ >= 702
newtype Eval a = Eval {unEval_ :: IO a}
deriving (Functor, Applicative, Monad)
-- GHC 7.2.1 added the seq# and spark# primitives, that we use in
-- the Eval monad implementation in order to get the correct
-- strictness behaviour.
-- | Pull the result out of the monad.
runEval :: Eval a -> a
# if MIN_VERSION_base(4,4,0)
runEval = unsafeDupablePerformIO . unEval_
# else
runEval = unsafePerformIO . unEval_
# endif
-- | Run the evaluation in the 'IO' monad. This allows sequencing of
-- evaluations relative to 'IO' actions.
runEvalIO :: Eval a -> IO a
runEvalIO = unEval_
-- We don't use GND to derive MonadFix from the IO instance. The IO instance
-- has to be very careful to ensure that lazy blackholing doesn't cause IO
-- actions to be duplicated in case of an infinite loop. This has a small
-- performance cost. Eval computations are always assumed to be pure, so
-- duplicating them is okay. What about ST computations embedded in Eval ones?
-- Those also shouldn't be a problem: the ST computations are "closed", so it's
-- safe to duplicate them, and the RTS already takes care to avoid resuming
-- a computation paused by an asynchronous exception in multiple threads.
-- Lazy ST takes care of itself with noDuplicate#, so we don't really need
-- to think about it too much.
--
-- Note:
-- mfix f = let res = runEval (Lift <$> f (unLift res))
-- in case res of Lift r -> return r
-- data Lift a = Lift a
instance MonadFix Eval where
-- Borrowed from the instance for ST
mfix k = Eval $ IO $ \ s ->
let ans = liftEv (k r) s
Evret _ r = ans
in
case ans of Evret s' x -> (# s', x #)
data Evret a = Evret (State# RealWorld) a
-- liftEv is useful when we want a lifted result from an Eval computation. It
-- is used to implement mfix.
liftEv :: Eval a -> State# RealWorld -> Evret a
liftEv (Eval (IO m)) = \s -> case m s of (# s', r #) -> Evret s' r
#else
data Eval a = Done a
-- | Pull the result out of the monad.
runEval :: Eval a -> a
runEval (Done x) = x
-- | Run the evaluation in the 'IO' monad. This allows sequencing of
-- evaluations relative to 'IO' actions.
runEvalIO :: Eval a -> IO a
runEvalIO (Done x) = return x
instance Functor Eval where
fmap = liftM
instance Applicative Eval where
pure = Done
(<*>) = ap
instance Monad Eval where
return = pure
Done x >>= k = lazy (k x) -- Note: pattern 'Done x' makes '>>=' strict
instance MonadFix Eval where
mfix f = let r = f (runEval r) in r
{-# RULES "lazy Done" forall x . lazy (Done x) = Done x #-}
-- The Eval monad satisfies the monad laws.
--
-- (1) Left identity:
-- return x >>= f ==> Done x >>= f ==> f x
--
-- (2) Right identity:
-- (i) m >>= return =*> Done u >>= return
-- ==> return u
-- ==> Done u <*= m
-- (ii) m >>= return =*> undefined >>= return
-- ==> undefined <*= m
--
-- (3) Associativity:
-- (i) (m >>= f) >>= g =*> (Done u >>= f) >>= g
-- ==> f u >>= g <== (\x -> f x >>= g) u
-- <== Done u >>= (\x -> f x >>= g)
-- <*= m >>= (\x -> f x >>= g)
-- (ii) (m >>= f) >>= g =*> (undefined >>= f) >>= g
-- ==> undefined >>= g
-- ==> undefined <== undefined >>= (\x -> f x >>= g)
-- <*= m >>= (\x -> f x >>= g)
#endif
-- -----------------------------------------------------------------------------
-- Strategies
-- | A 'Strategy' is a function that embodies a parallel evaluation strategy.
-- The function traverses (parts of) its argument, evaluating subexpressions
-- in parallel or in sequence.
--
-- A 'Strategy' may do an arbitrary amount of evaluation of its
-- argument, but should not return a value different from the one it
-- was passed.
--
-- Parallel computations may be discarded by the runtime system if the
-- program no longer requires their result, which is why a 'Strategy'
-- function returns a new value equivalent to the old value. The
-- intention is that the program applies the 'Strategy' to a
-- structure, and then uses the returned value, discarding the old
-- value. This idiom is expressed by the 'using' function.
--
type Strategy a = a -> Eval a
-- | Evaluate a value using the given 'Strategy'.
--
-- > x `using` s = runEval (s x)
--
using :: a -> Strategy a -> a
x `using` strat = runEval (strat x)
-- | evaluate a value using the given 'Strategy'. This is simply
-- 'using' with the arguments reversed.
--
withStrategy :: Strategy a -> a -> a
withStrategy = flip using
-- | Evaluate a value using the given 'Strategy' inside the 'IO' monad. See
-- also 'runEvalIO'.
--
-- > x `usingIO` s = runEvalIO (s x)
--
usingIO :: a -> Strategy a -> IO a
x `usingIO` strat = runEvalIO (strat x)
-- | Evaluate a value using the given 'Strategy' inside the 'IO' monad. This
-- is simply 'usingIO' with the arguments reversed.
--
withStrategyIO :: Strategy a -> a -> IO a
withStrategyIO = flip usingIO
-- | Compose two strategies sequentially.
-- This is the analogue to function composition on strategies.
--
-- For any strategies @strat1@, @strat2@, and @strat3@,
--
-- > (strat1 `dot` strat2) `dot` strat3 == strat1 `dot` (strat2 `dot` strat3)
-- > strat1 `dot` strat1 = strat1
-- > strat1 `dot` r0 == strat1
--
-- > strat2 `dot` strat1 == strat2 . withStrategy strat1
--
dot :: Strategy a -> Strategy a -> Strategy a
strat2 `dot` strat1 = strat2 . runEval . strat1
-- Proof of strat2 `dot` strat1 == strat2 . withStrategy strat1
--
-- strat2 . withStrategy strat1
-- == \x -> strat2 (withStrategy strat1 x)
-- == \x -> strat2 (x `using` strat1)
-- == \x -> strat2 (runEval (strat1 x))
-- == \x -> (strat2 . runEval . strat1) x
-- == strat2 `dot` strat1
-- One might be tempted to think that 'dot' is equivalent to '(<=<)',
-- the right-to-left Kleisli composition in the Eval monad, because
-- '(<=<)' can take the type @Strategy a -> Strategy a -> Strategy a@
-- and intuitively does what 'dot' does: First apply the strategy to the
-- right then the one to the left. However, there is a subtle difference
-- in strictness, witnessed by the following example:
--
-- > (r0 `dot` rseq) undefined == Done undefined
-- > (r0 <=< rseq) undefined == undefined
--
-- | Inject a sequential strategy (ie. coerce a sequential strategy
-- to a general strategy).
--
-- Thanks to 'evalSeq', the type @Control.Seq.Strategy a@ is a subtype
-- of @'Strategy' a@.
evalSeq :: SeqStrategy a -> Strategy a
evalSeq strat x = strat x `pseq` return x
-- | A name for @Control.Seq.Strategy@, for documentation only.
type SeqStrategy a = Control.Seq.Strategy a
-- --------------------------------------------------------------------------
-- Basic strategies (some imported from SeqStrategies)
-- | 'r0' performs *no* evaluation.
--
-- > r0 == evalSeq Control.Seq.r0
--
r0 :: Strategy a
r0 x = return x
-- Proof of r0 == evalSeq Control.Seq.r0
--
-- evalSeq Control.Seq.r0
-- == \x -> Control.Seq.r0 x `pseq` return x
-- == \x -> Control.Seq.Done `pseq` return x
-- == \x -> return x
-- == r0
-- | 'rseq' evaluates its argument to weak head normal form.
--
-- > rseq == evalSeq Control.Seq.rseq
--
rseq :: Strategy a
#if __GLASGOW_HASKELL__ >= 702
rseq x = Eval (evaluate x)
#else
rseq x = x `seq` return x
#endif
-- Staged NOINLINE so we can match on rseq in RULES
{-# NOINLINE [1] rseq #-}
-- Proof of rseq == evalSeq Control.Seq.rseq
--
-- evalSeq Control.Seq.rseq
-- == \x -> Control.Seq.rseq x `pseq` return x
-- == \x -> (x `seq` Control.Seq.Done) `pseq` return x
-- == \x -> x `pseq` return x
-- == rseq
-- | 'rdeepseq' fully evaluates its argument.
--
-- > rdeepseq == evalSeq Control.Seq.rdeepseq
--
rdeepseq :: NFData a => Strategy a
rdeepseq x = do rseq (rnf x); return x
-- Proof of rdeepseq == evalSeq Control.Seq.rdeepseq
--
-- evalSeq Control.Seq.rdeepseq
-- == \x -> Control.Seq.rdeepseq x `pseq` return x
-- == \x -> (x `deepseq` Control.Seq.Done) `pseq` return x
-- == \x -> (rnf x `seq` Control.Seq.Done) `pseq` return x
-- == \x -> rnf x `pseq` return x
-- == rdeepseq
-- | 'rpar' sparks its argument (for evaluation in parallel).
rpar :: Strategy a
#if __GLASGOW_HASKELL__ >= 702
rpar x = Eval $ IO $ \s -> spark# x s
#else
rpar x = case (par# x) of { _ -> Done x }
#endif
{-# INLINE rpar #-}
-- | Perform a computation in parallel using a strategy.
--
-- @
-- rparWith strat x
-- @
--
-- will spark @strat x@. Note that @rparWith strat@ is /not/ the
-- same as @rpar `dot` strat@. Specifically, @rpar `dot` strat@
-- always sparks a computation to reduce the result of the
-- strategic computation to WHNF, while @rparWith strat@ need
-- not.
--
-- > rparWith r0 = r0
-- > rparWith rpar = rpar
-- > rparWith rseq = rpar
--
-- @rparWith rpar x@ creates a spark that immediately creates another
-- spark to evaluate @x@. We consider this equivalent to @rpar@ because
-- there isn't any real additional parallelism. However, it is always
-- less efficient because there's a bit of extra work to create the
-- first (useless) spark. Similarly, @rparWith r0@ creates a spark
-- that does precisely nothing. No real parallelism is added, but there
-- is a bit of extra work to do nothing.
rparWith :: Strategy a -> Strategy a
rparWith strat = parEval . strat
-- | 'parEval' sparks the computation of its argument for evaluation in
-- parallel. Unlike @'rpar' . 'runEval'@, 'parEval'
--
-- * does not exit the `Eval` monad
--
-- * does not have a built-in `rseq`, so for example @'parEval' ('r0' x)@
-- behaves as you might expect (it creates a spark that does no
-- evaluation).
--
-- It is related to 'rparWith' by the following equality:
--
-- > parEval . strat = rparWith strat
--
parEval :: Eval a -> Eval a
-- The intermediate `Lift` box is necessary, in order to avoid a built-in
-- `rseq` in `parEval`. In particular, we want @parEval . r0 = r0@, not
-- @parEval . r0 = rpar@.
parEval m = do
l <- rpar r
return (case l of Lift x -> x)
where
r = runEval (Lift <$> m)
data Lift a = Lift a
-- --------------------------------------------------------------------------
-- Strategy combinators for Traversable data types
-- | Evaluate the elements of a traversable data structure
-- according to the given strategy.
evalTraversable :: Traversable t => Strategy a -> Strategy (t a)
evalTraversable = traverse
{-# INLINE evalTraversable #-}
-- | Like 'evalTraversable' but evaluates all elements in parallel.
parTraversable :: Traversable t => Strategy a -> Strategy (t a)
parTraversable strat = evalTraversable (rparWith strat)
{-# INLINE parTraversable #-}
-- --------------------------------------------------------------------------
-- Strategies for lists
-- | Evaluate each element of a list according to the given strategy.
-- Equivalent to 'evalTraversable' at the list type.
evalList :: Strategy a -> Strategy [a]
evalList = evalTraversable
-- Alternative explicitly recursive definition:
-- evalList strat [] = return []
-- evalList strat (x:xs) = strat x >>= \x' ->
-- evalList strat xs >>= \xs' ->
-- return (x':xs')
-- | Evaluate each element of a list in parallel according to given strategy.
-- Equivalent to 'parTraversable' at the list type.
parList :: Strategy a -> Strategy [a]
parList = parTraversable
-- Alternative definition via evalList:
-- parList strat = evalList (rparWith strat)
-- | @'evaListSplitAt' n stratPref stratSuff@ evaluates the prefix
-- (of length @n@) of a list according to @stratPref@ and its the suffix
-- according to @stratSuff@.
evalListSplitAt :: Int -> Strategy [a] -> Strategy [a] -> Strategy [a]
evalListSplitAt n stratPref stratSuff xs
= let (ys,zs) = splitAt n xs in
stratPref ys >>= \ys' ->
stratSuff zs >>= \zs' ->
return (ys' ++ zs')
-- | Like 'evalListSplitAt' but evaluates both sublists in parallel.
parListSplitAt :: Int -> Strategy [a] -> Strategy [a] -> Strategy [a]
parListSplitAt n stratPref stratSuff = evalListSplitAt n (rparWith stratPref) (rparWith stratSuff)
-- | Evaluate the first n elements of a list according to the given strategy.
evalListN :: Int -> Strategy a -> Strategy [a]
evalListN n strat = evalListSplitAt n (evalList strat) r0
-- | Like 'evalListN' but evaluates the first n elements in parallel.
parListN :: Int -> Strategy a -> Strategy [a]
parListN n strat = evalListN n (rparWith strat)
-- | Evaluate the nth element of a list (if there is such) according to
-- the given strategy.
-- This nth is 0-based. For example, @[1, 2, 3, 4, 5] `using` evalListNth 4 rseq@
-- will eval @5@, not @4@.
-- The spine of the list up to the nth element is evaluated as a side effect.
evalListNth :: Int -> Strategy a -> Strategy [a]
evalListNth n strat = evalListSplitAt n r0 (evalListN 1 strat)
-- | Like 'evalListN' but evaluates the nth element in parallel.
parListNth :: Int -> Strategy a -> Strategy [a]
parListNth n strat = evalListNth n (rparWith strat)
-- | Divides a list into chunks, and applies the strategy
-- @'evalList' strat@ to each chunk in parallel.
--
-- It is expected that this function will be replaced by a more
-- generic clustering infrastructure in the future.
--
-- If the chunk size is 1 or less, 'parListChunk' is equivalent to
-- 'parList'
--
parListChunk :: Int -> Strategy a -> Strategy [a]
parListChunk n strat xs
| n <= 1 = parList strat xs
| otherwise = concat `fmap` parList (evalList strat) (chunk n xs)
chunk :: Int -> [a] -> [[a]]
chunk _ [] = []
chunk n xs = as : chunk n bs where (as,bs) = splitAt n xs
-- --------------------------------------------------------------------------
-- Convenience
-- | A combination of 'parList' and 'map', encapsulating a common pattern:
--
-- > parMap strat f = withStrategy (parList strat) . map f
--
parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f = (`using` parList strat) . map f
-- --------------------------------------------------------------------------
-- Strategies for lazy lists
-- List-based non-compositional rolling buffer strategy, evaluating list
-- elements to weak head normal form.
-- Not to be exported; used in evalBuffer and for optimisation.
evalBufferWHNF :: Int -> Strategy [a]
evalBufferWHNF n0 xs0 = return (ret xs0 (start n0 xs0))
where -- ret :: [a] -> [a] -> [a]
ret (x:xs) (y:ys) = y `pseq` (x : ret xs ys)
ret xs _ = xs
-- start :: Int -> [a] -> [a]
start 0 ys = ys
start !_n [] = []
start !n (y:ys) = y `pseq` start (n-1) ys
-- | 'evalBuffer' is a rolling buffer strategy combinator for (lazy) lists.
--
-- 'evalBuffer' is not as compositional as the type suggests. In fact,
-- it evaluates list elements at least to weak head normal form,
-- disregarding a strategy argument 'r0'.
--
-- > evalBuffer n r0 == evalBuffer n rseq
--
evalBuffer :: Int -> Strategy a -> Strategy [a]
evalBuffer n strat = evalBufferWHNF n . map (withStrategy strat)
-- Like evalBufferWHNF but sparks the list elements when pushing them
-- into the buffer.
-- Not to be exported; used in parBuffer and for optimisation.
parBufferWHNF :: Int -> Strategy [a]
parBufferWHNF n0 xs0 = return (ret xs0 (start n0 xs0))
where -- ret :: [a] -> [a] -> [a]
ret (x:xs) (y:ys) = y `par` (x : ret xs ys)
ret xs _ = xs
-- start :: Int -> [a] -> [a]
start 0 ys = ys
start !_n [] = []
start !n (y:ys) = y `par` start (n-1) ys
-- | Like 'evalBuffer' but evaluates the list elements in parallel when
-- pushing them into the buffer.
parBuffer :: Int -> Strategy a -> Strategy [a]
parBuffer n strat = parBufferWHNF n . map (withStrategy strat)
-- Alternative definition via evalBuffer (may compromise firing of RULES):
-- parBuffer n strat = evalBuffer n (rparWith strat)
-- Deforest the intermediate list in parBuffer/evalBuffer when it is
-- unnecessary:
{-# NOINLINE [1] evalBuffer #-}
{-# NOINLINE [1] parBuffer #-}
{-# RULES
"evalBuffer/rseq" forall n . evalBuffer n rseq = evalBufferWHNF n
"parBuffer/rseq" forall n . parBuffer n rseq = parBufferWHNF n
#-}
-- --------------------------------------------------------------------------
-- Strategies for tuples
evalTuple2 :: Strategy a -> Strategy b -> Strategy (a,b)
evalTuple2 strat1 strat2 (x1,x2) =
pure (,) <*> strat1 x1 <*> strat2 x2
evalTuple3 :: Strategy a -> Strategy b -> Strategy c -> Strategy (a,b,c)
evalTuple3 strat1 strat2 strat3 (x1,x2,x3) =
pure (,,) <*> strat1 x1 <*> strat2 x2 <*> strat3 x3
evalTuple4 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy (a,b,c,d)
evalTuple4 strat1 strat2 strat3 strat4 (x1,x2,x3,x4) =
pure (,,,) <*> strat1 x1 <*> strat2 x2 <*> strat3 x3 <*> strat4 x4
evalTuple5 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy e -> Strategy (a,b,c,d,e)
evalTuple5 strat1 strat2 strat3 strat4 strat5 (x1,x2,x3,x4,x5) =
pure (,,,,) <*> strat1 x1 <*> strat2 x2 <*> strat3 x3 <*> strat4 x4 <*> strat5 x5
evalTuple6 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy e -> Strategy f -> Strategy (a,b,c,d,e,f)
evalTuple6 strat1 strat2 strat3 strat4 strat5 strat6 (x1,x2,x3,x4,x5,x6) =
pure (,,,,,) <*> strat1 x1 <*> strat2 x2 <*> strat3 x3 <*> strat4 x4 <*> strat5 x5 <*> strat6 x6
evalTuple7 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy e -> Strategy f -> Strategy g -> Strategy (a,b,c,d,e,f,g)
evalTuple7 strat1 strat2 strat3 strat4 strat5 strat6 strat7 (x1,x2,x3,x4,x5,x6,x7) =
pure (,,,,,,) <*> strat1 x1 <*> strat2 x2 <*> strat3 x3 <*> strat4 x4 <*> strat5 x5 <*> strat6 x6 <*> strat7 x7
evalTuple8 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy e -> Strategy f -> Strategy g -> Strategy h -> Strategy (a,b,c,d,e,f,g,h)
evalTuple8 strat1 strat2 strat3 strat4 strat5 strat6 strat7 strat8 (x1,x2,x3,x4,x5,x6,x7,x8) =
pure (,,,,,,,) <*> strat1 x1 <*> strat2 x2 <*> strat3 x3 <*> strat4 x4 <*> strat5 x5 <*> strat6 x6 <*> strat7 x7 <*> strat8 x8
evalTuple9 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy e -> Strategy f -> Strategy g -> Strategy h -> Strategy i -> Strategy (a,b,c,d,e,f,g,h,i)
evalTuple9 strat1 strat2 strat3 strat4 strat5 strat6 strat7 strat8 strat9 (x1,x2,x3,x4,x5,x6,x7,x8,x9) =
pure (,,,,,,,,) <*> strat1 x1 <*> strat2 x2 <*> strat3 x3 <*> strat4 x4 <*> strat5 x5 <*> strat6 x6 <*> strat7 x7 <*> strat8 x8 <*> strat9 x9
parTuple2 :: Strategy a -> Strategy b -> Strategy (a,b)
parTuple2 strat1 strat2 =
evalTuple2 (rparWith strat1) (rparWith strat2)
parTuple3 :: Strategy a -> Strategy b -> Strategy c -> Strategy (a,b,c)
parTuple3 strat1 strat2 strat3 =
evalTuple3 (rparWith strat1) (rparWith strat2) (rparWith strat3)
parTuple4 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy (a,b,c,d)
parTuple4 strat1 strat2 strat3 strat4 =
evalTuple4 (rparWith strat1) (rparWith strat2) (rparWith strat3) (rparWith strat4)
parTuple5 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy e -> Strategy (a,b,c,d,e)
parTuple5 strat1 strat2 strat3 strat4 strat5 =
evalTuple5 (rparWith strat1) (rparWith strat2) (rparWith strat3) (rparWith strat4) (rparWith strat5)
parTuple6 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy e -> Strategy f -> Strategy (a,b,c,d,e,f)
parTuple6 strat1 strat2 strat3 strat4 strat5 strat6 =
evalTuple6 (rparWith strat1) (rparWith strat2) (rparWith strat3) (rparWith strat4) (rparWith strat5) (rparWith strat6)
parTuple7 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy e -> Strategy f -> Strategy g -> Strategy (a,b,c,d,e,f,g)
parTuple7 strat1 strat2 strat3 strat4 strat5 strat6 strat7 =
evalTuple7 (rparWith strat1) (rparWith strat2) (rparWith strat3) (rparWith strat4) (rparWith strat5) (rparWith strat6) (rparWith strat7)
parTuple8 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy e -> Strategy f -> Strategy g -> Strategy h -> Strategy (a,b,c,d,e,f,g,h)
parTuple8 strat1 strat2 strat3 strat4 strat5 strat6 strat7 strat8 =
evalTuple8 (rparWith strat1) (rparWith strat2) (rparWith strat3) (rparWith strat4) (rparWith strat5) (rparWith strat6) (rparWith strat7) (rparWith strat8)
parTuple9 :: Strategy a -> Strategy b -> Strategy c -> Strategy d -> Strategy e -> Strategy f -> Strategy g -> Strategy h -> Strategy i -> Strategy (a,b,c,d,e,f,g,h,i)
parTuple9 strat1 strat2 strat3 strat4 strat5 strat6 strat7 strat8 strat9 =
evalTuple9 (rparWith strat1) (rparWith strat2) (rparWith strat3) (rparWith strat4) (rparWith strat5) (rparWith strat6) (rparWith strat7) (rparWith strat8) (rparWith strat9)
-- --------------------------------------------------------------------------
-- Strategic function application
{-
These are very handy when writing pipeline parallelism asa sequence of
@$@, @$|@ and @$||@'s. There is no need of naming intermediate values
in this case. The separation of algorithm from strategy is achieved by
allowing strategies only as second arguments to @$|@ and @$||@.
-}
-- | Sequential function application. The argument is evaluated using
-- the given strategy before it is given to the function.
($|) :: (a -> b) -> Strategy a -> a -> b
f $| s = \ x -> let z = x `using` s in z `pseq` f z
-- | Parallel function application. The argument is evaluated using
-- the given strategy, in parallel with the function application.
($||) :: (a -> b) -> Strategy a -> a -> b
f $|| s = \ x -> let z = x `using` s in z `par` f z
-- | Sequential function composition. The result of
-- the second function is evaluated using the given strategy,
-- and then given to the first function.
(.|) :: (b -> c) -> Strategy b -> (a -> b) -> (a -> c)
(.|) f s g = \ x -> let z = g x `using` s in
z `pseq` f z
-- | Parallel function composition. The result of the second
-- function is evaluated using the given strategy,
-- in parallel with the application of the first function.
(.||) :: (b -> c) -> Strategy b -> (a -> b) -> (a -> c)
(.||) f s g = \ x -> let z = g x `using` s in
z `par` f z
-- | Sequential inverse function composition,
-- for those who read their programs from left to right.
-- The result of the first function is evaluated using the
-- given strategy, and then given to the second function.
(-|) :: (a -> b) -> Strategy b -> (b -> c) -> (a -> c)
(-|) f s g = \ x -> let z = f x `using` s in
z `pseq` g z
-- | Parallel inverse function composition,
-- for those who read their programs from left to right.
-- The result of the first function is evaluated using the
-- given strategy, in parallel with the application of the
-- second function.
(-||) :: (a -> b) -> Strategy b -> (b -> c) -> (a -> c)
(-||) f s g = \ x -> let z = f x `using` s in
z `par` g z
-- -----------------------------------------------------------------------------
-- Old/deprecated stuff
{-# DEPRECATED Done "The Strategy type is now a -> Eval a, not a -> Done" #-}
-- | DEPRECCATED: replaced by the 'Eval' monad
type Done = ()
{-# DEPRECATED demanding "Use pseq or $| instead" #-}
-- | DEPRECATED: Use 'pseq' or '$|' instead
demanding :: a -> Done -> a
demanding = flip pseq
{-# DEPRECATED sparking "Use par or $|| instead" #-}
-- | DEPRECATED: Use 'par' or '$||' instead
sparking :: a -> Done -> a
sparking = flip par
{-# DEPRECATED (>|) "Use pseq or $| instead" #-}
-- | DEPRECATED: Use 'pseq' or '$|' instead
(>|) :: Done -> Done -> Done
(>|) = Prelude.seq
{-# DEPRECATED (>||) "Use par or $|| instead" #-}
-- | DEPRECATED: Use 'par' or '$||' instead
(>||) :: Done -> Done -> Done
(>||) = par
{-# DEPRECATED rwhnf "renamed to rseq" #-}
-- | DEPRECATED: renamed to 'rseq'
rwhnf :: Strategy a
rwhnf = rseq
{-# DEPRECATED seqTraverse "renamed to evalTraversable" #-}
-- | DEPRECATED: renamed to 'evalTraversable'
seqTraverse :: Traversable t => Strategy a -> Strategy (t a)
seqTraverse = evalTraversable
{-# DEPRECATED parTraverse "renamed to parTraversable" #-}
-- | DEPRECATED: renamed to 'parTraversable'
parTraverse :: Traversable t => Strategy a -> Strategy (t a)
parTraverse = parTraversable
{-# DEPRECATED seqList "renamed to evalList" #-}
-- | DEPRECATED: renamed to 'evalList'
seqList :: Strategy a -> Strategy [a]
seqList = evalList
{-# DEPRECATED seqPair "renamed to evalTuple2" #-}
-- | DEPRECATED: renamed to 'evalTuple2'
seqPair :: Strategy a -> Strategy b -> Strategy (a,b)
seqPair = evalTuple2
{-# DEPRECATED parPair "renamed to parTuple2" #-}
-- | DEPRECATED: renamed to 'parTuple2'
parPair :: Strategy a -> Strategy b -> Strategy (a,b)
parPair = parTuple2
{-# DEPRECATED seqTriple "renamed to evalTuple3" #-}
-- | DEPRECATED: renamed to 'evalTuple3'
seqTriple :: Strategy a -> Strategy b -> Strategy c -> Strategy (a,b,c)
seqTriple = evalTuple3
{-# DEPRECATED parTriple "renamed to parTuple3" #-}
-- | DEPRECATED: renamed to 'parTuple3'
parTriple :: Strategy a -> Strategy b -> Strategy c -> Strategy (a,b,c)
parTriple = parTuple3
{-# DEPRECATED unEval "renamed to runEval" #-}
-- | DEPRECATED: renamed to 'runEval'
unEval :: Eval a -> a
unEval = runEval
{- $history #history#
The strategies library has a long history. What follows is a
summary of how the current design evolved, and is mostly of
interest to those who are familiar with an older version, or need
to adapt old code to use the newer API.
Version 1.x
The original Strategies design is described in /Algorithm + Strategy = Parallelism/ <http://www.macs.hw.ac.uk/~dsg/gph/papers/html/Strategies/strategies.html>
and the code was written by
Phil Trinder, Hans-Wolfgang Loidl, Kevin Hammond et al.
Version 2.x
Later, during work on the shared-memory implementation of
parallelism in GHC, we discovered that the original formulation of
Strategies had some problems, in particular it lead to space leaks
and difficulties expressing speculative parallelism. Details are in
the paper /Runtime Support for Multicore Haskell/ <http://community.haskell.org/~simonmar/papers/multicore-ghc.pdf>.
This module has been rewritten in version 2. The main change is to
the 'Strategy a' type synonym, which was previously @a -> Done@ and
is now @a -> Eval a@. This change helps to fix the space leak described
in \"Runtime Support for Multicore Haskell\". The problem is that
the runtime will currently retain the memory referenced by all
sparks, until they are evaluated. Hence, we must arrange to
evaluate all the sparks eventually, just in case they aren't
evaluated in parallel, so that they don't cause a space leak. This
is why we must return a \"new\" value after applying a 'Strategy',
so that the application can evaluate each spark created by the
'Strategy'.
The simple rule is this: you /must/ use the result of applying
a 'Strategy' if the strategy creates parallel sparks, and you
should probably discard the the original value. If you don't
do this, currently it may result in a space leak. In the
future (GHC 6.14), it will probably result in lost parallelism
instead, as we plan to change GHC so that unreferenced sparks
are discarded rather than retained (we can't make this change
until most code is switched over to this new version of
Strategies, because code using the old verison of Strategies
would be broken by the change in policy).
The other changes in version 2.x are:
* Strategies can now be defined using a convenient Monad/Applicative
type, 'Eval'. e.g. @parList s = traverse (Par . (``using`` s))@
* 'parList' has been generalised to 'parTraverse', which works on
any 'Traversable' type, and similarly 'seqList' has been generalised
to 'seqTraverse'
* 'parList' and 'parBuffer' have versions specialised to 'rwhnf',
and there are transformation rules that automatically translate
e.g. @parList rwnhf@ into a call to the optimised version.
* 'NFData' has been moved to @Control.DeepSeq@ in the @deepseq@
package. Note that since the 'Strategy' type changed, 'rnf'
is no longer a 'Strategy': use 'rdeepseq' instead.
Version 2.1 moved NFData into a separate package, @deepseq@.
Version 2.2 changed the type of Strategy to @a -> Eval a@, and
re-introduced the @r0@ strategy which was missing in version 2.1.
Version 2.3 simplified the @Eval@ type, so that @Eval@ is now just
the strict identity monad. This change and various other
improvements and refactorings are thanks to Patrick Maier who
noticed that @Eval@ didn't satisfy the monad laws, and that a
simpler version would fix that problem.
(version 2.3 was not released on Hackage).
Version 3 introduced a major overhaul of the API, to match what is
presented in the paper
/Seq no More: Better Strategies for Parallel Haskell/
<http://community.haskell.org/~simonmar/papers/strategies.pdf>
The major differences in the API are:
* The addition of Sequential strategies ("Control.Seq") as
a composable means for specifying sequential evaluation.
* Changes to the naming scheme: 'rwhnf' renamed to 'rseq',
'seqList' renamed to 'evalList', 'seqPair' renamed to
'evalTuple2',
The naming scheme is now as follows:
* Basic polymorphic strategies (of type @'Strategy' a@) are called @r...@.
Examples: 'r0', 'rseq', 'rpar', 'rdeepseq'.
* A strategy combinator for a particular type constructor
or constructor class @T@ is called @evalT...@, @parT...@ or @seqT...@.
* The @seqT...@ combinators (residing in module
"Control.Seq") yield sequential strategies.
Thus, @seqT...@ combinators cannot spark, nor can the sequential
strategies to which they may be applied.
Examples: 'seqTuple2', 'seqListN', 'seqFoldable'.
* The @evalT...@ combinators do not spark themselves, yet they may
be applied to strategies that do spark. (They may also be applied
to non-sparking strategies; however, in that case the corresponding
@seqT...@ combinator might be a better choice.)
Examples: 'evalTuple2', 'evalListN', 'evalTraversable'.
* The @parT...@ combinators, which are derived from their @evalT...@
counterparts, do spark. They may be applied to all strategies,
whether sparking or not.
Examples: 'parTuple2', 'parListN', 'parTraversable'.
* An exception to the type driven naming scheme are 'evalBuffer' and
'parBuffer', which are not named after their type constructor (lists)
but after their function (rolling buffer of fixed size).
-}
|